Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi O là một điểm bất kì bên trong khối đa diện.
Chia khối đa diện đều n mặt đã cho thành n khối chóp có đỉnh là O và các mặt đáy là các mặt của khối đa diện. Chiều cao hạ từ O đến n mặt tương ứng là h 1 , h 2 , . . . , h n
Khi đó
Chọn C
Vì bài toán cho với đa diện đều n mặt và một điểm bất kỳ bên trong đa diện, nên ta chọn đa diện đều là hình lập phương cạnh a, và điểm bất kỳ là tâm I của nó. Khi đó, ta có:
Tổng khoảng cách từ I đến các mặt bên là 6 × a 2 = 3 a (đvđd)
Thể tích V = a 3 (đvtt), diện tích mỗi mặt bên S = a 2 (đvdt)
Suy ra, tổng khoảng cách bằng 3 V S .
Xét tứ diện đều A.BCD cạnh bằng a. Gọi G 1 , G 2 , G 3 v à G 4 lần lượt là tâm của các tam giác BCD, ACD, ABD và ABC.
Gọi M là trung điểm của BC.
Xét tam giác AMD có:
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Cho hình tứ diện đều ABCD, cạnh bằng a. Gọi E, F, I, J lần lượt là tâm của các mặt ABC, ABD, ACD, BCD (H.11).
Vì , nên \(\dfrac{EF}{CD}=\dfrac{1}{3}\)
Suy ra .
Tương tự, các cạnh khác của tứ diện EFIJ đều bằng .
Do đó tứ diện EFIJ là một tứ diện đều.
* Gọi a là số cạnh, b là số mặt của khối đa diện.
Nếu khối đa diện có các mặt là tam giác thì mỗi mặt có ba cạnh. Trong ba cạnh đó mỗi cạnh lần lượt là cạnh chung của hai mặt.
Ta có 3b = 2a. Nghĩa là b chẵn.
Mà 2a chia hết cho 2 nên 3b cũng chia hết cho 2
⇒ b chia hết cho 2 hay b là số chẵn.
* Ví dụ: hình tứ diện đều có 4 mặt
Chọn C
Ta có AC'=6 nên AB = 2 3 .
Mặt cầu (S) có tâm I(2;4;-1) trùng với tâm hình lập phương ABCD.A'B'C'D' và có bán kính R =1 < A B 2 nên mặt cầu (S) nằm trong hình lập phương ABCD.A'B'C'D'.
Với mọi điểm M nằm trong hình lập phương ABCD.A'B'C'D', tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 3AB = 6 3 .
Vậy từ một điểm M bất kỳ thuộc mặt cầu (S), tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 6 3 .
Ta có tứ diện đều ABCD, M là một điểm trong của nó. Gọi V là thể tích, S là diện tích mỗi mặt của tứ diện đều ABCD, h A , h B , h C , h D lần lượt là khoảng cách từ M đến các mặt (BCD), (CDA), (DAB), (ABC).
Khi đó ta có:
V = V MBCD + V MCDA + V MDAB + V MABCV
= S( h A + h B + h C + h D )/3
Từ đó suy ra h A + h B + h C + h D = 3V/S