Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng chứng minh được công thức: \(111...1=\frac{10^n-1}{9}\)
(n số 1)
Áp dụng công thức trên ta có:
\(a+b+1=111...1.10^n+111...1+111...1.4+1\)
(n số 1) (n số 1) (n số 1)
\(=\frac{10^n-1}{9}.\left(10^n+1+4\right)+1\)
\(=\frac{10^n-1}{9}.\left(10^n+1+4+3\right)-\frac{10^n-1}{9}.3+1\)
\(=\frac{10^n-1}{9}.\left(10^n+8\right)-\frac{10^n-1}{3}+1\)
\(=111...1.3.333...36-333...3+1\)
(n số 1) (n - 1 số 3) (n số 3)
\(=333...3.333...36-333...32\)
(n số 3)(n - 1 số 3)(n - 1 số 3)
\(=333...3.333...34+333...3+333...3-333...32\)
(n số 3)(n - 1 số 3)(n số 3) (n số 3) (n - 1 số 3)
\(=333...34^2\), là số chính phương (đpcm)
(n - 1 số 3)
Ta có A-B=11...1(2n c/s 1)-22....2(n c/s 2)
A-B=11....1(n c/s 1)x10n +11.....1(n /s 1)-2x 11.....1(n c/s 1)
Đặt 11.....1(n c/s 1)=a(a thuộc N)
A-B=a(9a+1)+a-2a
A-B=9a2+a+a-2a
A-B=9a2
A-B=(3a)2.Vì a thuộc N nên 3a thuộc N nên A-B là số chính phương