Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x ≤ 0 ⇒ |x|=−x|x|=−x
Suy ra: x+|x|=x−x=0x+|x|=x−x=0
Vậy phương trình x+|x|=0x+|x|=0 nghiệm đúng với mọi x ≤ 0.
Ta có : x + |x| = 0
=> |x| = -x (1)
Ta có : |x| = x
<=> \(\orbr{\begin{cases}\left|x\right|=x\left(x\ge0\right)\\\left|x\right|=-x\left(x\le0\right)\end{cases}}\) (2)
Từ (1) và (2) => phương trình có nghiệm x ≤ 0 (đpcm)
Ta có \(x^2-2x+2=\left(x-1\right)^2+1>0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)
Nếu x \(\le0\) thì \(\left|x\right|=-x\)
\(\Rightarrow x+\left|x\right|=x-x=0\)
Vậy với mọi số \(x\le0\) đều nghiệm đúng phương trình .
Theo đề bài ta có:
x + |x| = 0 và x \(\le0\)
=> |x| = x; -x + x = 0 và x + x \(\ne\) 0 ngoại trừ x = 0.
Vậy với mọi x \(\le\) là nghiệm của phương trình x + |x| = 0.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Thay x = 2 vào vế trái phương trình (1):
2 2 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái phương trình (2):
2 + (2 - 2) (2.2 + l) = 2 + 0 = 2
Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (2).
x ≤ 0 ⇒ |x| = -x
Suy ra: x + |x| = x – x = 0
Vậy mọi x ≤ 0 đều là nghiệm của phương trình x + |x| = 0