Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)
Đặt \(\frac{x}{z}=\frac{z}{y}=k\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)(1)
\(\Rightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+z^2}=\frac{k^2\left(z^2+y^2\right)}{y^2+z^2}=k^2\)(2)
Từ (1) suy ra \(x=yk^2\Rightarrow\frac{x}{y}=\frac{yk^2}{y}=k^2\)(3)
Từ (2) và (3) suy ra \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Đặt\(\frac{x}{z}\)=\(\frac{z}{y}\)= k
=> x = k . z ; z = k . y
=>\(\frac{x^2+y^2}{y^2+z^2}\)= \(\frac{\left(k.z\right)^2+\left(k.y\right)^2}{y^2+z^2}\)=\(\frac{k^2.\left(z^2+y^2\right)}{z^2+y^2}\)= \(k^2\)(1)
=> \(\frac{x}{y}\)= \(\frac{k.z}{y}\)=\(\frac{k.k.y}{y}\)=\(\frac{k^2.y}{y}\)= \(k^2\)(2)
Từ (1);(2)
=> ĐPCM
~~~~~Chúc bạn hok tốt~~~~~
\(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)
mà x<y=>a<b=> \(\frac{a+a}{2m}
\(\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)
= \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
---> dp cm
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\left(x+y+z=1\right)\)
Dấu ''='' xảy ra <=> x = y = z = \(\frac{1}{3}\)
Vậy x2 + y2 + z2 \(\ge\frac{1}{3}\) tại x = y = z = \(\frac{1}{3}\)