Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)
mà x<y=>a<b=> \(\frac{a+a}{2m}<\frac{a+b}{2m}\)
=> x<z
\(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}\)
tương tự=> z<y
Vậy x<x<y
a) Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) suy ra x < y < z
hoặc tham khảo ở http://lazi.vn/edu/exercise/gia-su-x-a-m-y-b-m-a-b-m-z-b-0-va-x-y-hay-chung-to-rang-neu-chon-z-a-b-2m-thi-ta-co-x-z-y
b) Ta có:
\(\frac{1}{2}< \frac{2}{2}< \frac{3}{2}< \frac{4}{2}< \frac{5}{2}\)
\(\Rightarrow\) 3 phân số nằm giữa \(\frac{1}{2}\) và \(\frac{5}{2}\) là \(\frac{2}{2};\frac{3}{2};\frac{4}{2}\)
Ta có : x < y mà \(x=\frac{a}{m}\)và \(y=\frac{b}{m}\)
\(\Rightarrow a< b\)
a<b \(\Rightarrow a+a< b+a\)
\(\text{Hay}\)\(2a< b+a\)
\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)
\(\Rightarrow z>x\)( 1)
a < b \(\Rightarrow a+b< b+b\)
Hay \(a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow z< y\)(2)
Từ (1) và (2) suy ra : x < z < y (đpcm)
\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow x< z< y\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)