K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Gọi các cạnh của tam giác lần lượt là x;y;z.

Theo đề ta có:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=22\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)

\(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=2.2=4\\\frac{y}{4}=2\Rightarrow y=2.4=8\\\frac{z}{5}=2\Rightarrow z=2.5=10\end{cases}}\)

Vậy độ dài của 3 cạnh tam giác lần lượt là 4;8;10

9 tháng 8 2017

gọi 3 cạnh của tam giác ấy là a,b,c

theo bài ra ta có a/2=b/4=c/5

đặt a/2=b/4=c/5=k

=>a=2k;b=4k;c=5k

ta có a+b+c=22 hay 2k+4k+5k=22

                                           11k=22

                                              k=2

=>a=4;b=8;c=10

7 tháng 3 2018

Giả sử ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;
AM ≤ AC
+ Nếu M ≡ A hoặc M ≡ B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.
+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC
+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC
+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH
Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA
Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC
Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤ AB, AM ≤ AC

16 tháng 12 2018

Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)

\(\Rightarrow\frac{a}{2}=4\Rightarrow a=4.2=8\left(m\right)\)

\(\frac{b}{4}=4\Rightarrow b=4.4=16\left(m\right)\)

\(\frac{c}{5}=4\Rightarrow c=4.5=20\left(m\right)\)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 8m, 16m, 20m