K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

em ko biết làm mới  học lớp 1 mà

8 tháng 3 2018

a) Ta có : abab = ab00 + ab

= 100ab + 1ab

= (100 + 1)ab

=101ab

=> 101ab cha hết cho 101 nhưng không chia hết cho 10201

Vậy abab chia hết cho 101 nhưng không chia hết cho 101^2

Do đó abab không phải là số chính phương.

b) Ta có: abcabc = abc.1001

Để abcabc là số chính phương thì abc chỉ có thể là 1001

Mà abc là số có 3 chữ số

Do đó abcabc không phải là số chính phương

15 tháng 2 2019

\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)

ta thấy k-n và k+n cùng tính chẵn lẻ 

Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2  

mà 2002=2.7.11.13

Vậy không tồn tại n thuộc N để n2+2002 là SCP

p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='

15 tháng 2 2019

tối mai duyệt nhé.h đi ngủ đã:))

16 tháng 4 2019

Gia sử A= \(n^2+2006\)là số chính phương

=> \(n^2+2006=k^2\)

=>\(k^2-n^2=2006\)=> (k+n)(k-n)=2006

mà (k+n)-(k-n)=2n\(⋮\)2=>k+n; k-n  cùng tính chẳn,lẻ

Th1: nếu k+n và k-n là số chẵn => k+n\(⋮\)2

                                                        k-n \(⋮\)2

=>(k+n)(k-n)\(⋮\)4 mà 2006 ko chia hết cho 4-> vô lí

Th2: nếu k+n và k-n là số lẻ =>(k+n)(k-n)là số lẻ=> (k+n)(k-n)=2006->vô lí

=> ko có gt n để \(n^2+2006\)là số chính phương

Tức là \(n^2+2006\)ko phải là số chính phương

16 tháng 4 2019

Một số chính phương chia 4 dư 0 hoặc 1 

Đặt   \(n^2+2006=a^2\left(a\in N\right)\)

+, Nếu n^2 chia hết cho 4 thì  a^2 chia 4 dư 2 (vô lí)

+, Nếu n^2 chia 4 dư 1 thì a^2 chia 4 dư 3 (vô lí)

Vậy với mọi n là số tự nhiên thì n mũ 2 cộng 2006 không phải số chính phương

3 tháng 9 2017

Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)

cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng

\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

phân tích 10^2n = (10^n)^2

10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được

\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)

=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{3^2}\)

=\(\left(\frac{10^n+8}{3}\right)^2\)

vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương

3 tháng 9 2017

bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào

26 tháng 8 2019

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM

25 tháng 6 2021

Có 6 đường thẳng cắt nhau tại O, các góc không có điểm trong chung (là hai góc mà mỗi cạnh góc này không nằm giữa 2 cạnh góc kia)

=> tạo ra 12 góc

12 góc có tổng bằng 360 độ

* Nếu mọi góc đều nhỏ hơn 30 độ thì tổng không thể bằng 360 độ (vô lý)

=> tồn tại 1 góc lớn hơn 30 độ (1)

* Nếu mọi góc đều lớn hơn 30 độ thì tổng không thể bằng 360 độ (vô lý)

=> tồn tại 1 góc nhỏ hơn 30 độ (2)

Từ (1), (2) => tồn tại một góc lớn hơn hoặc bằng 30 độ và tồn tại một góc nhỏ hơn hoặc bằng 30 độ

Ps : nhớ k :))

                                                                                                                                                     # Aeri # 

17 tháng 4 2018

Giả sử tam giác đã cho là ABC . Gọi M,N,P là trung điểm của các cạnh  BC,CA,AB và G là trọng tâm của tam giác . Lấy \(A_0,B_0,C_0,X,Y,Z,T,S,R\)lần lượt là các trung điểm của các đoạn thẳng GA,GB,GC,BM,CM,CN,AN,AP,BP . Tam giác ABC chia thành 12 phần = nhau

Theo nguyên lý Dirichlet , trong số 13 điểm đã cho tồn tại hai điểm cùng thuộc 1 phần . Do cạnh của tam giác ABC = 6cm  nên \(GA_0=AA_0\)\(GB_0=BB_0=CC_0=GC_0=\sqrt{3cm}\)