Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039
=> 2 ( a + b + c ) = 4039 - c (1)
a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)0
=> 2 ( a + b + c ) = 4039 - c \(\le\)4039
=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)
mà f(1) = a + b + c
=> f (1) \(\le2019\frac{1}{2}\)
Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2
\(f\left(x\right)=ax^{2\: }+bx+c\)
\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
Ta có: \(\hept{\begin{cases}a+3c=2019\\a+2b=2020\end{cases}}\)
\(\Rightarrow a+3c+a+2b=2019+2020\)
\(\Leftrightarrow2a+2b+3c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)+c=4039\)
Vì a,b,c không âm => 2(a+b+c)\(\le2\left(a+b+c\right)+c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)=4039\)
\(\Leftrightarrow a+b+c=\frac{4039}{2}\)
\(\Leftrightarrow a+b+c=2019\frac{1}{2}\)
\(\Rightarrow f\left(1\right)\le2019\frac{1}{2}\left(đpcm\right)\)
Bạn có thể giải thích cho mình là tại sao \(\left(2019-3c\right)+\frac{1+3c}{2}+c=2019\frac{1}{2}-\frac{c}{2}\)
\(\left(2019-3c\right)+\frac{1+3c}{2}+c=2019-3c+\frac{1}{2}+\frac{3c}{2}+c=2019\frac{1}{2}-\left(3c-c-\frac{3c}{2}\right)=2019\frac{1}{2}-\frac{c}{2}\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm