Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$
$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$
$\Rightarrow a+b\vdots 3$
$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$
Do đó:
$2013=(a+b)^3-3ab(a+b)\vdots 9$
Điều này vô lý do $2013\not\vdots 9$
Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.
Lời giải:
Ta biết rằng một số lập phương khi chia 9 có thể nhận dư là $0,1,8$
Tức là:
$a^3\equiv 0,1,8\pmod {9}$
$b^3\equiv 0,1,8\pmod {9}$
$\Rightarrow a^3-b^3\equiv 0,-1,-8, 1,-7, 8, 7\pmod {9}$
Hay $a^3-b^3\equiv 0,8, 1, 2, 7\pmod {9}$
Mà $2019\equiv 3\pmod {9}$
Do đó không tồn tại số nguyên $a,b$ thỏa mãn $a^3-b^3=2019$ (đpcm)
Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)
\(\Rightarrow x^2-y^2=2018\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)
Dễ c/m: x và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)
Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)
Mà 2018 không chia hết cho 4 nên điều g/s là sai
Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)
Ta có : x2 - 2018 = y2
=> x2 - y2 = 2018
=> (x + y)(x - y) = 2018
Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)
Lập bảng xét 8 trường hợp ta có :
x - y | 1 | 2018 | 2 | 1009 | -1 | -2018 | -1009 | -2 |
x + y | 2018 | 1 | 1009 | 2 | -2018 | -1 | -2 | -1009 |
x | 2019/2 | 2009/2 | 1011/2 | 1011/2 | -2019/2 | -2019/2 | -1011/2 | -1011/2 |
y | 2017/2 | -2007/2 | 1007/2 | -1007/2 | -2017/2 | 2017/2 | -1007/2 | 1007/2 |
=> Không tồn tại cặp số nguyên x,y thỏa mãn
Ta có: (a+b)3=a3+b3+3ab.(a+b)=2013+3ab.(a+b) chia hết cho 3
Do đó: (a+b)3 chi hết cho 3
=> (a + b) chia hết cho 3
=> (a+b)3 chia hết cho 27.
Ta có: 3ab.(a+b) chia hết cho 9
2013 = (a+b)3−3ab.(a+b) chia hết cho 9: vô lý vì 2013 chia 9 dư 6
Vậy không tồn tại hay hai số nguyên dương a và b thỏa mãn đề bài