Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)
Chúc bạn học tốt!
a/b=c/d
=> ad=bc
=>ac-ad=ac-bc
=>a(c-d)=c(a-b)
=> a/(a-b)=c/(c-d)
Bài 1
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy .....
Bài 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{b}{a}=\frac{d}{c}=\frac{b+d}{a+c}\Rightarrow\frac{b}{a}=\frac{b+d}{a+c}\left(dpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}=\frac{b+d}{a+c}\Rightarrow\frac{b}{a}=\frac{b+d}{c+a}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{a+b}{c+d}\right)^3\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)
\(\frac{a^3}{c^3}=\frac{b^3}{d^3^.}=\frac{a^3-b^3}{c^3-d^3}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Theo đầu bài ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) ( đpcm )
a/b=b/c=c/d
(a/b)^3=a/b.b/c.c/d
a^3/b^3=a.b.c/b.c.d
a^3/b^3=a/d