\(\frac{a}{b}\)=\(\frac{c}{d}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

o biết tui còn ôn thi

1 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có: 

      \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{a+b}{c+d}\right)^3\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

\(\frac{a^3}{c^3}=\frac{b^3}{d^3^.}=\frac{a^3-b^3}{c^3-d^3}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

12 tháng 7 2017

giúp mình bài này với

so sánh bằng cách nhanh nhất

a 2013 phần 2012 và 13 phần 12

b 15 phần 46 và 21 phần 62

12 tháng 8 2019

Ở ngay dưới câu hỏi của bạn có đấy. Mai Chi Lê Vũ

17 tháng 11 2016

b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}

=>căn x E{6;4;8;2;14;-4}

=>xE{36;24;64;4;196;16}

Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}

4 tháng 9 2016

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=k^3\)(1)

Mặt khác: Áp dụng tính chất dãy tỉ số bằng nhau ta cũng có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}=k\Rightarrow\left(\frac{a+b-c}{b+c-d}\right)^3=k^3\)(2)

Từ (1) và (2) ta được: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(=k^3\right)\)

(Mình có sửa lại đề vì nếu viết mẫu của phân số thứ nhất là b3 + c3 + d3 là sai)

4 tháng 9 2016

bạn có chơi truy kich ko

28 tháng 10 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)

28 tháng 10 2017

Đặt \(\frac{a}{b}\)\(\frac{c}{d}\)= k  => a= bk ; c = dk 
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)\(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)\(\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}\)\(\frac{bk.b}{dk.d}\)\(\frac{b^2}{d^2}\) (2)

Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\) 

11 tháng 8 2018

a) Áp dụng TC của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a-2c+3e}{b-2d+3f}\left(đpcm\right)\)

11 tháng 8 2018

 a, Ta có

\(\frac{c}{d}=\frac{2c}{2d};\frac{e}{f}=\frac{3e}{3f}\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}=\frac{3e}{3f}=\frac{a-2c+3e}{b-2d+3f}\)( t/c dãy tỉ số bằng nhau )

b, \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)( t/c dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a}{b}=\frac{a+c+e}{b+d+f}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+c+e}{b+d+f}\right)^3\)