K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

11 tháng 12 2018

Ta có : \(b^2=ac\) 

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1) 

\(c^2=bd\) 

\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) 

Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

15 tháng 10 2016

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm

11 tháng 11 2018

 \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\left(\frac{a+b}{c+d}\right)^3\)(1)

Ta lại có : \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

12 tháng 7 2017

giúp mình bài này với

so sánh bằng cách nhanh nhất

a 2013 phần 2012 và 13 phần 12

b 15 phần 46 và 21 phần 62

29 tháng 11 2016

Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

 

28 tháng 12 2016

con Alayna nay ngu vai thon