Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{k^2}<\dfrac{1}{k(k-1)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Ap dung:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\ldots+\dfrac{1}{n^2}<1+\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\ldots+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)=2-\dfrac{1}{n}<2\)
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(A=\frac{x+1}{x+\sqrt{x}+1}\)
Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)
\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)
\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)
\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)
b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)
Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)
Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)
Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{100}<1\)
Mà \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\) nên A không phải số tự nhiên
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)
\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)
\(2A<\)\(\frac{1}{2}\)
\(\Rightarrow A<\)\(\frac{1}{4}\)
Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)