\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{2014}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\)

\(\Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}\\ \Rightarrow2A=1-\dfrac{1}{3^{2014}}\\ \Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{2014}}< \dfrac{1}{2}\)

26 tháng 9 2017

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\)=>\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2013}}\)

=>\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2013}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\right)\)

=>\(2A=1-\frac{1}{2^{2014}}< 1\Rightarrow A< \frac{1}{2}\)(đpcm)

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).

19 tháng 12 2017

Ta có :

M = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

3M = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3M - M = ( \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)) - ( \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\))

2M = \(1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow M=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

19 tháng 12 2017

3M=1+1/3+1/3^2+....+1/3^98

2M=3M-M=(1+1/3+1/3^2+....+1/3^98)-(1/3+1/3^2+....+1/3^99) = 1-1/3^99 < 1

=> M < 1/2

=> ĐPCM

k mk nha

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

27 tháng 8 2016

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(2C=3C-C=1-\frac{1}{3^{99}}\Rightarrow C=\left(1-\frac{1}{3^{99}}\right):2=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)

26 tháng 10 2017

Đặt M=1/3+1/3^2+....+1/3^99

Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1))(cái này bạn tự quy đồng ra ra nhé!). 
Áp dụng ta có:1-1/3=2/3 
1/3-1/(3^2)=2/(3^2) 
1/(3^2)-1/(3^3)=2/(3^3) 
.... 
1/(3^98)-1/(3^99)=2/(3^99). 
Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M. 
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)

NV
5 tháng 11 2019

\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)

\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)

\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)

\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)

28 tháng 11 2017

3C = 1+1/3+1/3^2+....+1/3^98

2C = 3C - C = (1+1/3+1/3^2+...+1/3^98) - (1/3+1/3^2+1/3^3+...+1/3^99) = 1- 1/3^99 < 1

=> C < 1/2

k mk nha

28 tháng 11 2017

C=1\2-1\2*3^99<1\2