Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)
\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)
Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006
=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)
=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)
=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)
=>A=1/1004+1/1005+.....+1/2006
Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )
\(\Rightarrow3B=3+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(3+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=3-\frac{1}{3^{2005}}\Rightarrow B=\left(3-\frac{1}{3^{2005}}\right):2\)
\(\Rightarrow\left(3-\frac{1}{3^{2005}}\right):2<\frac{1}{2}\Rightarrow B<\frac{1}{2}\)
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005
B=1/2-1/(32005.2)
Vậy B <1/2
\(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(3.P=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2004}}\)
=> \(3.P-P=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
=> \(2.P=1-\frac{1}{3^{2005}}<1\)
=> P < 1/2
Vậy....