Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)
Lời giải :
+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng )
Suy ra (*) đúng với \(n=1\) (1)
+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\); \(\left(1+2\right)^2=3^2=9\)
\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)
+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).
Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :
\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)
\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)
Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)
\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)
\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)
Do đó \(1^3+2^3+....+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)
\(=\left(1+2+3+....+k+k+1\right)^2\)
Vậy (*) đúng với \(n=k+1\) (3)
Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n, n +1, n + 2 (n ∈ N, n > 2).
Ta có: (n - 2)2 + (n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5(n2 + 2)
Vì n2 không thể tận cùng là 3 hoặc 8, do đó n2 + 2 không thể chia hết cho 5.
Nên 5(n2 + 2) không là số chính phương, cũng có nghĩa là tổng của 5 số tự nhiên liên tiếp không thể là số chính phương.
Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này là 5!=120(số)
Số các số tự nhiên có 5 chữ số khác nhau lập nên từ 5 chữ số này có bắt đầu là 34 là: 3!=6(số)
=>Có 120-6=114(số) cần tìm
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.
P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x
Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên
Bạn xem lại đề, tổng của các chữ số hay tích của các chữ số hay hiệu hay gì đó?