Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}\)=>\(\begin{cases}mx-m^2y=2m-4m^2\left(1\right)\\mx+y=3m+1\left(2\right)\end{cases}\)
lấy (2)-(1) ta được
=>\(\begin{cases}y.\left(1+m^2\right)=1+m+4m^2\left(3\right)\\mx+y=3m+1\end{cases}\)
để hệ phương trình có nghiệm khi phương trình (3) có nghiệm
mà ta có 1+\(m^2\) \(\ne\)0 với mọi m nên hệ trên luôn có nghiệm với mọi m
\(\left\{{}\begin{matrix}x-my=2-4m\\m^2x+my=3m^2+m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-my=2-4m\\\left(m^2+1\right)x=3m^2-3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{3m^2-3m+2}{m^2+1}=3-\frac{3m+1}{m^2+1}\\y=\frac{4m^2+m+1}{m^2+1}=4-\frac{3-m}{m^2+1}\end{matrix}\right.\)
\(L=\left(3-\frac{3m+1}{m^2+1}\right)^2+\left(4-\frac{3-m}{m^2+1}\right)^2-6+\frac{6m+2}{m^2+1}\)
\(=19-\frac{4m+6}{m^2+1}\)
\(L_{max}\) khi \(k=\frac{4m+6}{m^2+1}\) đạt min
\(k=\frac{4m+6}{m^2+1}=km^2-4m+k-6=0\)
\(\Delta'=4-k\left(k-6\right)\ge0\)
\(\Leftrightarrow-k^2+6k+4\ge0\Rightarrow3-\sqrt{13}\le k\le3+\sqrt{13}\)
\(\Rightarrow L\le19-\left(3-\sqrt{13}\right)=16+\sqrt{13}\)
a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM