Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{4}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{4}+\frac{15}{20}=1\)
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}+\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=1\)
Vậy B>1
Hok tốt
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}=\frac{1}{4}+\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{19}\right)\) > \(\frac{1}{4}+\left(\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)> \(\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>1\)
Nhiều cách lắm,ví dụ nhé:
B = ( \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\) ) + ( \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\))
______________________ _________________________
B C
-Ta xét B ( vì bạn bảo chi tiết nên tôi làm như vậy còn ở bài thì không cần như vậy )
\(\frac{1}{4}>\frac{1}{12}\);...; \(\frac{1}{11}>\frac{1}{12}\)
-Xét C : \(\frac{1}{12}>\frac{1}{20};...;\frac{1}{19}>\frac{1}{20}\)
(=) B > \(\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)
_________________ ___________________
8 số 8 số
(=) B > \(\frac{8}{12}+\frac{8}{20}\)= \(\frac{2}{3}+\frac{2}{5}\)= \(\frac{16}{15}\)> 1
(=) B > 1 (đpcm)
B = \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
B = \(\left(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\right)>\left(\frac{1}{11}+...+\frac{1}{11}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)
B > \(\frac{240}{209}\)
Vậy B > 1.
Ta có :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+..............+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{19}\right)\)
Ta thấy :
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
\(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.5>\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+...+\frac{1}{19}\right)>\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)=> \(B>\frac{8}{12}+\frac{8}{20}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>\frac{15}{15}=1\)
=> ĐPCM
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}>1\)
Kết luận B > 1
Bạn chú ý: Đinh Tuấn Việt đã trả lời sai:
\(1-\frac{1}{5}<1\) do đó \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)(cái này mình cũng ko hiểu sao bạn có thể làm được như vậy)
nên \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}<1\)
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=\frac{16}{16}=1\)