K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Nhiều cách lắm,ví dụ nhé:
B = ( \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\) ) + ( \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\))
        ______________________        _________________________
                      B                                                  C
-Ta xét B ( vì bạn bảo chi tiết nên tôi làm như vậy còn ở bài thì không cần như vậy )
\(\frac{1}{4}>\frac{1}{12}\);...; \(\frac{1}{11}>\frac{1}{12}\)
-Xét C : \(\frac{1}{12}>\frac{1}{20};...;\frac{1}{19}>\frac{1}{20}\)
(=) B > \(\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)
                  _________________                    ___________________
                      8 số                                               8 số
(=) B > \(\frac{8}{12}+\frac{8}{20}\)\(\frac{2}{3}+\frac{2}{5}\)\(\frac{16}{15}\)> 1
(=) B > 1 (đpcm)

25 tháng 4 2020

I don't no

21 tháng 4 2019

 Ta có:

 \(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{5^2}< \frac{1}{4.5}\)

....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)

                                                                      \(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

                             => đpcm                                                             

21 tháng 4 2019

Thank bn Hoàng đạo thứ 7 nhé. Cho 3 k r nhé hihi

6 tháng 4 2019

\(a)\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)\(=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{3}{10}.\frac{-4}{3}}=\frac{5}{24}\)

Hok tốt

6 tháng 4 2019

Yume Nguyễn bạn giải giúp mk phần b đc k

13 tháng 6 2018

Ta có:

\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)

\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)

\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)

     \(B>\frac{4}{5}+\frac{1}{5}\)

    \(B>1\)\(\left(đpcm\right)\)

1 tháng 9 2017

\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=\frac{16}{16}=1\)

14 tháng 3 2020

_ giải bừa :v _

\(T=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}\)

Ta thấy : \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{14^2}< \frac{1}{12.14}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{2^2}+\frac{1}{2.4}+...+\frac{1}{12.14}\)

\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}\left(\frac{2}{2.4}+...+\frac{2}{12.14}\right)\)

\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{14}\right)\)

\(\Rightarrow T< \frac{1}{4}+\frac{1}{2}.\frac{3}{7}\)

\(\Rightarrow T< \frac{13}{28}\)

Mà \(\frac{13}{28}< \frac{1}{2}\Rightarrow T< \frac{1}{2}\)

....

N
2 tháng 5 2016

B = 1/4 + 1/5 + 1/6 + ... + 1/19 > 1

B = 1/4+﴾1/5+1/6+...+1/9﴿+﴾1/10+1/11+...+1/19﴿

Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2

Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2

Suy ra: B > 1/4+1/2+1/2 > 1