K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 332 \(\equiv\) -1 (mod 5)

=> (332)33 \(\equiv\) (-1)33 (mod 5)

=> 3366 \(\equiv\) -1 (mod 5) (1)

Lại có: 772 \(\equiv\) -1 (mod 5)

=> (772)27 \(\equiv\) (-1)27 (mod 5)

=> 7754 \(\equiv\) -1 (mod 5)

=> 7754.77 \(\equiv\) (-1).77 (mod 5)

=> 7755 \(\equiv\) -77 \(\equiv\) -2 \(\equiv\) 3 (mod 5) (2)

Từ (1) và (2) => 3366 + 7755 \(\equiv\) -1 + 3 \(\equiv\) 2 (mod 5

=> 3366 + 7755 - 2 ⋮ 5

1 tháng 8 2019

Ko Dùng mod làm đc ko ?

31 tháng 3 2016

7755có tận cùng là 3

336có tận cùng là 9

nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5

18 tháng 9 2016

Ta có: 

812 - 233 - 230

= (23)12 - 233 - 230

= 236 - 233 - 230

= 230.(26 - 23 - 1)

= 230.(64 - 8 - 1)

= 230.55 chia hết cho 55 (đpcm)

18 tháng 9 2016

Ta có:

\(8^{12}-2^{33}-2^{30}\)

\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)

\(=8^{12}-8^{11}-8^{10}\)

\(=8^{10}\left(8^2-8-1\right)\)

\(=8^{10}.55⋮55\)

\(\Rightarrow8^{12}-2^{33}-2^{30}⋮55\left(đpcm\right)\)

15 tháng 8 2017

a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.

Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)

\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)

b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)

\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)

\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)

15 tháng 8 2017

câu a sai đề, bạn thử bấm máy xem chia hết ko

câu b

16^5 chia 33 dư 1

2^15 chia 33 dư 32

vậy 16^5 + 2^15 chia hết cho 33

17 tháng 7 2017

a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm

17 tháng 7 2017

\(A=7^6+7^5-7^4\)

\(A=7^4.7^2+7^4.7-7^4.1\)

\(A=7^4\left(7^2+7-1\right)\)

\(A=7^4.55\)

\(A⋮55\rightarrowđpcm\)

\(B=16^5+2^{15}\)

\(B=\left(2^4\right)^5+2^{15}\)

\(B=2^{20}+2^{15}\)

\(B=2^{15}.2^5+2^{15}.1\)

\(B=2^{15}\left(2^5+1\right)\)

\(B=2^{15}.33\)

\(B⋮33\rightarrowđpcm\)

15 tháng 11 2016

CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này: 
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1 
suy ra A mod 7 = 0 hay A chia hết cho 7. 
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242 
Vì 242 chia hết cho 11 nên A mod 11 = 0. 
Vậy A chia hết cho 7.11 =77

15 tháng 11 2016

aaaaa

a

a

a

a

a

a

a

a

a

a

aaaaaa

19 tháng 8 2016

\(=36^{33+5}+41^{33}=60466176\cdot36^{33}+41^{33}\)\(=60466175\cdot36^{33}+36^{33}+41^{33}\)

\(=60466175\cdot36^{33}+\left(36+41\right)\left(36^{32}-36^{31}\cdot41+...-41^{32}\right)\)

\(=77\cdot785275\cdot36^{33}+77\cdot M\)chia hết cho 77

1 tháng 4 2020

Tham khảo: https://hoc24.vn/hoi-dap/question/948622.html

TL
1 tháng 4 2020

Violympic toán 7

11 tháng 10 2023

a) 7⁶ + 7⁵ - 7⁴

= 7⁴.(7² + 7 - 1)

= 7⁴.55 ⋮ 55

Vậy (7⁶ + 7⁵ - 7⁴) ⋮ 55

b) 81⁷ - 27⁹ + 3²⁹

= (3⁴)⁷ - (3³)⁹ + 3²⁹

= 3²⁸ - 3²⁷ + 3²⁹

= 3²⁶.(3² - 3 + 3³)

= 3²⁶.(9 - 3 + 27)

= 3²⁶.33 ⋮ 33

Vậy (81⁷ - 27⁹ + 3²⁹) ⋮ 33