K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Đề sai bạn nhé. Cho $n=2$ thì $2n+1=5$, $n+2=4$ mà $5\not\vdots 4$.

 

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

8 tháng 1 2020

Ta thấy

n(n + 1)(n + 2) là ba số tự nhiên liên tiếp

Ta có nhận xét:

Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2

=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6

=> đpcm

8 tháng 1 2020

Với n là số nguyên

+ Ta thấy: \(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(n.\left(n+1\right)⋮2\)

+ Ta thấy: \(n,n+1\)\(n+2\) là 3 số nguyên liên tiếp

\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3

\(\left(2;3\right)=1\)

\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)

hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)

+ Ta thấy:\(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)

15 tháng 8

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

27 tháng 1 2018

Câu a)

Ta có: \(n\left(n+1\right)=n^2+n\)

TH1: Khi n là số chẵn 

Khi n là số chẵn thì \(n^2\)cũng là số chẵn

Suy ra \(n^2+n\)chia hết cho 2

TH2: khi n là số lẻ

Khi n là số lẻ thì \(n^2\)cũng là số lẻ

Suy ra \(n^2+n\)chia hết cho 2

Vậy .................

Cấu dưới tương tự

Làm biếng :3

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

26 tháng 12 2021

thử từng th số dư là xong

26 tháng 12 2021

n.(n + 1).(2n + 1)

= n.(n + 1).(2n - 2 + 3)

= n.(n + 1).2.(n - 1) + 3n.(n + 1)

Có: n.(n + 1).(n - 1) là tích 3 số nguyên liên tiếp

=> n.(n + 1).(n - 1) chia hết cho 3

=> 2n.(n + 1).(n - 1) chia hết cho 3

Lại có: 3n.(n + 1) chia hết cho 3

=> ...

8 tháng 4 2019

Lời giải. Bước cơ sở: Với n = 1, ta có S1 = 1 + 1 = 2 chia hết cho 21 = 2. Bước quy nạp: Giả sử mệnh đề đúng với n = k, nghĩa là Sk = (k + 1)(k + 2) ...(k + k) chia hết cho 2k , ta phải chứng minh mệnh đề đúng với n = k + 1. Thật vậy, Sk+1 = (k + 2)(k + 3) ...[(k+1) + (k+1)]= 2(k + 1)(k + 2)...(k + k) = 2Sk. Theo giả thiết quy nạp Sk chia hết cho 2k , suy ra Sk+1 chia hết cho 2k+1. Theo nguyên lí quy nạp toán học Sn chia hết 2n với mọi n nguyên dương.