Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 20052007 + 20072005 = (20052007 + 12007 ) + (20072005 - 12005 )
Vì \(2005^{2007}+1^{2007}\)luôn chia hết cho \(2005+1=2006\left(1\right)\)
\(2007^{2005}-1^{2005}\)luôn chia hết cho \(2007-1=2006\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(2005^{2007}+1^{2007}\right)+\left(2007^{2005}-1^{2005}\right)⋮2006\)
\(\Rightarrow2005^{2007}+2007^{2005}⋮2006\)
Vậy \(2005^{2007}+2007^{2005}⋮2006\)
Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Ta có:
\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)
Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)
Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.
P/s: Thử lại bằng casio là thấy rõ bạn đúng.
Tư tưởng bảo thủ của bọn trẻ con và niềm tin mù quáng vào thầy cô đó bạn ^^
Đề : Cho m và n là số chữ số của 22007 và 52007 khi viết ở hệ thập phân.Tính m + n
Ta có : 10m - 1 < 22007 < 10m ; 10n - 1 < 52007 < 10n
=> 10m - 1.10n - 1 < 22007.52007 < 10m.10n
<=> 10m + n - 2 < 102007 < 10m + n
=> m + n - 2 < 2007 < m + n => m + n - 2 ; 2007 ; m + n là 3 số tự nhiên liên tiếp nên m + n = 2007 + 1 = 2008
Đáp án : E
Ko hiểu thì hỏi mình. Cũng có bài toán tiếng Việt tương tự ở link sau,bạn tham khảo thêm nhé :
olm.vn/hoi-dap/question/17686.html
Bài 2
\( a)4{\left( {x + 1} \right)^2} + {\left( {2x - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) = 11\\ \Leftrightarrow 4\left( {{x^2} + 2x + 1} \right) + 4{x^2} - 4x + 1 - 8\left( {{x^2} - 1} \right) = 11\\ \Leftrightarrow 4{x^2} + 8x + 4 + 4{x^2} - 4x + 1 - 8{x^2} + 8 = 11\\ \Leftrightarrow 4x + 13 = 11\\ \Leftrightarrow 4x = 11 - 13\\ \Leftrightarrow 4x = - 2\\ \Leftrightarrow x = - \dfrac{1}{2} \)
Bài 2:
\( b)\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) + x\left( {x + 2} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {2 + x} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {4 - {x^2}} \right) = 1\\ \Leftrightarrow {x^3} - 27 + 4x - {x^3} = 1\\ \Leftrightarrow 4x = 1 + 27\\ \Leftrightarrow 4x = 28\\ \Leftrightarrow x = 7 \)