\(\frac{2006.2006-2005.2007}{2006.2007-2006.2005}\)

bài làm nào đúng:

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)

Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.

P/s: Thử lại bằng casio là thấy rõ bạn đúng.

9 tháng 10 2019

Tư tưởng bảo thủ của bọn trẻ con và niềm tin mù quáng vào thầy cô đó bạn ^^

22 tháng 2 2019

TA CÓ  A= \(\left(\frac{2006-2005}{2006+2005}\right)^2\)=\(\frac{1}{4011^2}\)

            B=\(\frac{2006^2-2005^2}{2006^2+2005^2}\) = \(\frac{\left(2006-2005\right)\left(2006+2005\right)}{\left(2006+2005\right)^2-2.2005.2006}\) = \(\frac{4011}{4011^2-2.2006.2005}\)

VÌ 1.(\(4011^2\)-2.200.2005)<\(4011^2\).4011                       (DO \(4011^2\)>\(4011^2\)-2.2006.2005)

\(\Rightarrow\)\(\frac{1}{4011^2}\)\(\frac{4011}{4011^2-2.2005.2006}\) .HAY A<B

                                                                    VẬY A<B

                                                 

31 tháng 1 2018

Ta có :

\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{\left(2006-2005\right)^2}{\left(2006+2005\right)^2}=\frac{2006^2-2.2006.2005+2005^2}{2006^2+2.2006.2005+2005^2}=\frac{2006^2-2005^2}{2006^2+2005^2}\)

Vậy \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}\)

14 tháng 2 2018

Theo tính chất của phân thức ta có:

  \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006-2005}{2006+2005}.\frac{2006-2005}{2006+2005}< \frac{2006^2-2005^2}{\left(2006+2005\right)^2}\)

\(=\frac{2006^2-2005^2}{2006^2+2.2006.2005+2005^2}< \frac{2006^2-2005^2}{2006^2+2005^2}\)

27 tháng 1 2017

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)

30 tháng 12 2017

Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Ta có:

\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)