K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

a) Ta có: \(10^{2017}-1=100...0\)(2017 chữ số 0) - 1 = 99...9 (2017 chữ số 9)

Do \(99...99⋮9\Rightarrow10^{2017}-1⋮9\). Mà số chia hết cho 9 thì chia hết cho 3.

b) Ta có: \(10^{2020}+8=100...0\)(2020 chữ số 0) +8

Ta thấy tổng của số trên là \(1+0+0+...+0+8=9⋮9\Rightarrow10^{2020}+8⋮9\) mà số chia hết cho 9 thì chia hết cho 3.

c) Ta có: \(10^{2016}+8=10...0\)(2016 chữ số 0) + 8= \(10...008\)

Tổng của số trên là 9 nên số trên chia hết cho 9.

Ta lại có 3 chữ số tận cùng của sô trên chia hết cho 8 => số trên chia hết cho 8

=> Số trên chia hết cho 8.9=72

 

 

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

15 tháng 10 2015

1033​+8=100..000+8= 1000...008

tổng các chữ số là:1+0+0+0+...+0+0+8 =9 chia hết cho 9 nên số đó cũng chia hết cho 9.

​chữ số cuối cùng là 8 (số chẵn) nên chia hết cho2

​1014​+14 =100...000+14=1000...014

​có tổng các chữ số là 1+0+0+...+0+1+4=6 chia hết cho3 nên nó cũng chia hết cho 3

​tổng có kết quả với số cuối là 4 không chia hết cho 5 bạn nhé

b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)

c: 5^5-5^4+5^3

=5^3(5^2-5+1)

=5^3*21 chia hết cho 7

e:

72^63=(3^2*2^3)^63=3^126*2^189

 \(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)

\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189

=>ĐPCM

g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)

 

5 tháng 10 2017

a) - Xét trường hợp chia hết cho 2

 + Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.

- Xét trường hợp chia hết cho 3.

+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

Vậy n.(n+1).(2n+1) chia hết cho 2.

Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)

b) 10^9 + 2 = 100.....02.

Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)

c) 10^10 - 1 = 99...99

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

d) 10^8 - 1 = 99...9

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

E) 10^8 + 8 = 10...08 

Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)

13 tháng 12 2017

a) Ta có :

1033 + 8 = 100...008 \(⋮\)2 vì có tận cùng là số chia hết cho 2 và tổng các chữ số là : 1 + 0 + 0 + ... + 0 + 8 = 9 \(⋮\)9 nên 1033 + 8 \(⋮\)9

b) Ta có :

1010 + 14 = 100...014  \(⋮\)2 vì có tận cùng là số chia hết cho 2 và tổng các chữ số là : 1 + 0 + 0 + ... + 0 + 1 + 4 = 6 \(⋮\)3 nên 1010 + 14 \(⋮\)3

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3