Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
1033+8=100..000+8= 1000...008
tổng các chữ số là:1+0+0+0+...+0+0+8 =9 chia hết cho 9 nên số đó cũng chia hết cho 9.
chữ số cuối cùng là 8 (số chẵn) nên chia hết cho2
1014+14 =100...000+14=1000...014
có tổng các chữ số là 1+0+0+...+0+1+4=6 chia hết cho3 nên nó cũng chia hết cho 3
tổng có kết quả với số cuối là 4 không chia hết cho 5 bạn nhé
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a)
10^33 có dạng 10...0
=> 10^33 + 8 có dạng 10...08 chia hết cho 2
=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9
b) c) d) tương tự
a) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )
( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )
b) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )
( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )
d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9
Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0
cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3
Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9
\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9
Câu b mk hông biết bạn tự làm nha
Hk tốt
A = 2 + 22 + 23 + ... + 220
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 217(1+2+22+23)
A = 15.(2+25+...+217) chia hết cho 5
=> đpcm
a ) 10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
b ) 10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
1/
10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
2/
10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
tich nha
a) Ta có :
1033 + 8 = 100...008 \(⋮\)2 vì có tận cùng là số chia hết cho 2 và tổng các chữ số là : 1 + 0 + 0 + ... + 0 + 8 = 9 \(⋮\)9 nên 1033 + 8 \(⋮\)9
b) Ta có :
1010 + 14 = 100...014 \(⋮\)2 vì có tận cùng là số chia hết cho 2 và tổng các chữ số là : 1 + 0 + 0 + ... + 0 + 1 + 4 = 6 \(⋮\)3 nên 1010 + 14 \(⋮\)3