K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

ta chứng minh Q là nình phương của 1 số

ta thấy 20162+2016220172+20172=20162+20162(2016+1)2+(2016+1)2=20162+(2016+1)2(20162+1)=20162+(20162+1)(20162+2.2016+1)

                                                                                                      =20162+(20162+1)2+(20162+1)2.2016=(2016+20162+1)2

vậy Q=\(\sqrt{\left(2016+2016^2+1\right)^2}\)=2016+20162+1

29 tháng 7 2017

Xét P=\(2016^2+2016^2.2017^2+2017^2\)

Đặt \(a=2016\)\(\Rightarrow P=a^2+a^2.\left(a+1\right)^2+\left(a+1\right)^2\)

\(=a^2+a^2\left(a^2+2a+1\right)+a^2+2a+1\)

\(=a^4+2a^3+3a^2+2a+1\)

\(=\left(a^2+a+1\right)^2\)

gấu koala có avata chim cánh cụt

vô tay

10 tháng 6 2021

kk:))

9 tháng 6 2016

Đặt B = \(2016^2+2016^2\cdot2017^2+2017^2\)

      B = \(2016^2+2016^2\cdot\left(2016+1\right)^2+\left(2016+1\right)^2\)

      B = \(2016^2+2016^4+2\cdot2016^2\cdot2016+2016^2+\left(2016+1\right)^2\)

      B =\(2016^2+\left(2016^2+2016\right)^2+\left(2016+1\right)^2\)

      B = \(\left(2016+1\right)^2\left(2016^2+1\right)+2016^2\)

      B = \(2017^2\left(2017^2-2\cdot2016\right)+2016^2\)

      B = \(2017^2-2\cdot2017^2.2016+2016^2\)

      B = \(\left(2017^2-2012\right)^2\)

     => A = \(\sqrt{\left(2017^2-2016\right)^2}\)

         A =  \(2017^2-2016\)

Thuộc N => A là số tự nhiên

14 tháng 6 2017

a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)

=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)

=\(\sqrt{2}+\sqrt{3}+1\)

14 tháng 6 2017

a,\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\\ =\sqrt{2+3+1+2\sqrt{2}.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}=\sqrt{2}+\sqrt{3}+1\)

21 tháng 12 2016

Từ gt suy ra \(\frac{2016}{y}+\frac{2017}{x}\le1\).

Áp dụng BĐT Cauchy-Schwarz ta có:

\(x+y\ge\left(x+y\right)\left(\frac{2017}{x}+\frac{2016}{y}\right)\ge\left(\sqrt{2017}+\sqrt{2016}\right)^2\)

15 tháng 9 2016

Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)

\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)

Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017