Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=6\\2x-y=3\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(\dfrac{3}{2};0\right)\)
\(a\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=15+4\sqrt{45}+12+12\sqrt{5}\)
\(=27+4\sqrt{9.5}+12\sqrt{5}=27+12\sqrt{5}+12\sqrt{5}=27+24\sqrt{5}\)
\(b,2\sqrt{5}\left(2-3\sqrt{5}\right)+\left(1-2\sqrt{5}\right)^2+6\sqrt{5}\)
\(=4\sqrt{5}-30+1-4\sqrt{5}+20+6\sqrt{5}\)
\(=6\sqrt{5}-9\)
`b)đk:x>=1`
`sqrt{x^2-2x+4}=x-1`
BP 2 vế ta có:
`x^2-2x+4=x^2-2x+1`
`<=>3=0` vô lý
Vậy pt vô nghiệm
`d)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=1`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=1`
`<=>|x-1|+|x-2|=1`
`<=>|x-1|+|2-x|=1`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x-1|+|2-x|>=|x-1+2-x|=1`
Dấu "=" xảy ra khi `(x-1)(2-x)>=0`
`<=>(x-1)(x-2)<=0`
`<=>1<=x<=2`
Vậy pt có nghiệm `S={x|1<=x<=2}`
`sqrt{x+9}=3`
`đk:x+9>=0<=>x>=-9`
BP 2 vế ta có:
`x+9=3^2=9`
`<=>x=9-9=0`
Vậy `S={0}`
`c)sqrt{x^2-6x+9}=4-x`
`đk:4-x>=0<=>x<=4`
BP 2 vế ta có:
`x^2-6x+9=x^2-8x+16`
`<=>2x=7`
`<=>x=7/2(tm)`
Vậy `S={7/2}`
`a)sqrt{x^2+4}=x-2`
`đk:x-2>=0<=>x>=2`
BP 2 vế ta có:
`x^2+4=x^2-4x+4`
`<=>4x=0`
`<=>x=0(l)`
Vậy pt vô nghiệm
`b)sqrt{x^2-10x+25}=3-19x`
`đk:3-19x>=0<=>x<=3/19`
`pt<=>\sqrt{(x-5)^2}=3-19x`
`<=>|x-5|=3-19x`
`+)x-5=3-19x`
`<=>20x=8<=>x=2/5(tm)`
`+)x-5=19x-3`
`<=>18x=-2`
`<=>x=-1/9(tm)`
Vậy `S={2/5,-1/9}`
`c)sqrt{x^2-9}+sqrt{x^2-6x+9}=0`
`đk:x^2-9>=0<=>x^2>=9`
Vì `sqrt{x^2-9}>=0`
`sqrt{x^2-6x+9}>=0`
`=>sqrt{x^2-9}=sqrt{x^2-6x+9}=0`
`<=>sqrt{(x-3)(x+3)}=sqrt{(x-3)^2}=0`
`<=>x=3`
Vậy `S={3]`
\(=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}:\dfrac{\sqrt{x}+3-3}{\sqrt{x}+3}\)
\(=\dfrac{2x}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}}=2\sqrt{x}\left(\sqrt{x}-3\right)\)
\(n^3+3n^2-3n-1=\left(n-1\right)\left(n^2+n+1\right)+3n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2+4n+1\right)\)
Để \(n^3+3n^2-3n-1\) có giá trị là số nguyên tố thì:
\(\left[{}\begin{matrix}n-1=1\\n^2+4n+1=1\end{matrix}\right.\Rightarrow n=2\) (vì n là số nguyên dương).
Với \(n=2\) thì \(n^3+3n^2-3n-1=13\) là số nguyên tố (thỏa mãn).
Vậy \(n=2\)
7:
\(A=\sqrt{6x}+\sqrt{\dfrac{6}{x}}-\sqrt{\dfrac{2x}{3}}\)
\(=\sqrt{6x}-\sqrt{\dfrac{6x}{9}}+\sqrt{\dfrac{6x}{x^2}}\)
\(=\sqrt{6x}-\dfrac{1}{3}\sqrt{6x}+\dfrac{1}{x}\cdot\sqrt{6x}\)
\(=\sqrt{6x}\left(1-\dfrac{1}{3}+\dfrac{1}{x}\right)=\sqrt{6x}\left(\dfrac{2}{3}+\dfrac{1}{x}\right)\)
8: \(5\sqrt{a}-\sqrt{64a}+2\sqrt{9a}\)
\(=5\sqrt{a}-8\sqrt{a}+2\cdot3\sqrt{a}\)
\(=-3\sqrt{a}+6\sqrt{a}=3\sqrt{a}\)
9: \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)
\(=\sqrt{\dfrac{ab}{b^2}}+\sqrt{ab}+\dfrac{a}{\sqrt{a}}\cdot\dfrac{\sqrt{b}}{b}\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{\sqrt{ab}}{b}\)
\(=\sqrt{ab}\left(\dfrac{2}{b}+1\right)\)
10: \(A=5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+\sqrt{5}\)
\(=5\sqrt{a}+6\cdot\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+\sqrt{5}\)
\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+\sqrt{5}\)
\(=6\sqrt{a}+\sqrt{5}\)
11: \(A=-\sqrt{36a}-\dfrac{1}{3}\cdot\sqrt{54a}+\dfrac{1}{5}\cdot\sqrt{150a}\)
\(=-6\sqrt{a}-\dfrac{1}{3}\cdot3\sqrt{6a}+\dfrac{1}{5}\cdot5\sqrt{6a}\)
\(=-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}\)
\(=-6\sqrt{a}\)
12: \(A=5\sqrt{2a}-\sqrt{50a}-2\sqrt{a^3}+4\sqrt{32a}\)
\(=5\sqrt{2a}-5\sqrt{2a}-2a\sqrt{a}+4\cdot4\sqrt{2a}\)
\(=-2a\sqrt{a}+16\sqrt{2a}\)
Nhận thấy \(x_0=0\) không phải là nghiệm của phương trình đã cho.
Giả sử \(x_0< 0\), ta có \(x_0^3-x_0-1=0\)
\(\Leftrightarrow x_0\left(x_0^2-1\right)=1\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0+1\right)=1\) (*)
Nếu \(x_0\le-1\) thì VT (*) \(\le0< 1=VP\), do đó (*) vô lý.
Xét \(-1< x_0< 0\) thì \(-1< x_0^3< 0\) và \(0< -x_0< 1\)
Do đó \(VT=x_0^3-x_0< 0+1=1=VP\) nên (*) vô lý.
Vậy điều giả sử ban đầu là sai \(\Rightarrow x_0>0\)
Đặt f(x)=x3-x-1
Vì \(f\left(x\right)=x^3-x-1\)
nên hàm số liên tục trên R
\(f\left(1\right)=1^3-1-1=-1;f\left(2\right)=2^3-2-1=5\)
Vì \(f\left(1\right)\cdot f\left(2\right)< 0\)
nên hàm số f(x)=x3-x-1 có nghiệm trên khoảng (1;2)
=>\(x_0\in\left(1;2\right)\)
=>\(x_0>0\)