Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{b}{d}=k\Leftrightarrow a=bk;b=dk\Leftrightarrow a=bk=dk^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{d}=\dfrac{dk^2}{d}=k^2\\\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{d^2k^4+d^2k^2}{d^2k^2+d^2}=\dfrac{d^2k^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=k^2\end{matrix}\right.\\ \LeftrightarrowĐpcm\)
ta có :a/b=b/d =a+b/b+d => a/d=b/b=a+b/b+d
<=>a+b/b+d=a2+b2/b2+d2=a/d
\(\frac{a}{b}\)=\(\frac{b}{d}\)=> \(\frac{ab}{bd}\)= \(\frac{a^2}{b^2}\)=\(\frac{b^2}{d^2}\)=> \(\frac{a}{d}\)=\(\frac{a^2+b^2}{b^2+d^2}\)=> dpcm
Ta có : \(\frac{a}{b}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
Mặt khác \(\frac{a}{b}=\frac{b}{d}\) => ad = b2
Thay ad = b2 ta có : \(\frac{a^2+ad}{ad+d^2}=\frac{a\left(a+d\right)}{d\left(a+d\right)}=\frac{a}{d}\) (đpcm)
\(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{b}{d}.\frac{b}{d}=\frac{a}{b}.\frac{b}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}=\frac{a^2+b^2}{b^2+d^2}\)
Vậy ta có đpcm
Ta có: \(\frac{a}{b}=\frac{b}{d}\Rightarrow ad=b^2\)
Thay \(ad=b^2\), ta có
\(\frac{a^2+b^2}{b^2+d^2}=\frac{a^2+ad}{+ad+d^2}=\frac{\left(a+d\right)a}{\left(a+d\right)d}=\frac{a}{d}\)
Vậy\(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)khi\(\frac{a}{b}=\frac{b}{d}\)
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
ta có: \(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{ab}{bd}=\frac{a^2}{b^2}=\frac{b^2}{d^2}\) (*)
mà \(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
Từ (*) \(\Rightarrow\frac{ab}{bd}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{d}=\frac{a^2+b^2}{b^2+d^2}\left(đpcm\right)\) ( do \(\frac{ab}{bd}=\frac{a}{d}\))