Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng TC của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a-2c+3e}{b-2d+3f}\left(đpcm\right)\)
a, Ta có
\(\frac{c}{d}=\frac{2c}{2d};\frac{e}{f}=\frac{3e}{3f}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}=\frac{3e}{3f}=\frac{a-2c+3e}{b-2d+3f}\)( t/c dãy tỉ số bằng nhau )
b, \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)( t/c dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a}{b}=\frac{a+c+e}{b+d+f}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+c+e}{b+d+f}\right)^3\)
a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
câu 1: ta có \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (1)
ta lại có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+a}\) (2)
từ 1 và 2: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
đề bạn còn viết thiếu nx kìa
Lời giải:
Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:
$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$
Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$
Tương tự:
$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$
Từ $(*); (**)$ suy ra:
$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$
$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$
Hay $d\geq b+f$ (đpcm)
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow\hept{\begin{cases}ad+ab< bc+ab\\ad+cd< bc+cd\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+b\right)< c\left(b+d\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}< \frac{a+c}{b+d}\\\frac{a+c}{b+d}< \frac{c}{d}\end{cases}}\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}.\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}.\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k\Rightarrow\frac{k_1a}{k_1b}=\frac{k_2c}{k_2d}=\frac{k_3e}{k_3f}=k\Rightarrow...\)dãy tỉ số bằng nhau nữa là ra
Minh Triều tại k chắc chắn cho lắm