K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

a) \(x^2+6x+10\)

\(=\left(x^2+2.3x+9\right)+1\)

\(=\left(x+3\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

b) \(x^2-x+1\)

\(=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow DPCM\)

c) \(x^4-4x^2+5\)

\(=\left[\left(x^2\right)^2-2.2.x^2+2^2\right]+1\)

\(=\left(x^2-2\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

16 tháng 7 2018

a)  \(x^2-8x+19=\left(x-4\right)^2+3>0\)

b)  \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)

c)   \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

d)  \(x^2-4x+7=\left(x-2\right)^2+3>0\)

e)  \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

f)  do  \(x^2\ge0\) với mọi x

nên   \(x^2+8>0\)

5 tháng 8 2020

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

16 tháng 9 2016

a ) \(x^2+6x+10\)

\(=\left(x^2+2.x.3+3^2\right)+1\)

\(=\left(x+3\right)^2+1\ge1>0\) ( đpcm )

b ) \(x^2-x+1\)

\(=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) ( ddpcm ) 

 

16 tháng 9 2016

x2 + 6x + 10

= x2 + 2 . x . 3 + 9 + 1

= (x + 3)2 + 1

(x + 3)2 lớn hơn hoặc bằng 0

(x + 3)2 + 1 lớn hơn hoặc bằng 1 > 0 (đpcm)

x2 - x + 1

= x2 - 2 . x . 1/2 + 1/4 + 3/4

= (x - 1/2)2 + 3/4

(x - 1/2)2 lớn hơn hoặc bằng 0

(x - 1/2)2 + 3/4 lớn hơn hoặc bằng 3/4 > 0 (đpcm)

31 tháng 8 2018

\(x^2-6x+10\)

\(=x^2-2.x.3+9+1\)

\(=\left(x-3\right)^2+1>0\)

\(4x^2-20x+27\)

\(=\left(2x\right)^2-2.2x.5+25+2\)

\(=\left(2x-5\right)^2+2>0\)

\(x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

học tốt

31 tháng 8 2018

a) A=x2 _ 6x + 10

<=> A=x2-6x+9+1

<=> A=(x-3)2+1 luôn dương với mọi x

b) B=4x2 _ 20x + 27

<=> 4x2-20x +25+2

<=> (2x-5)2+2 luôn dương với mọi x

c) C=x2 + x +1

<=> x2+2.x 1/2  + 1/4 +3/4

<=> (x+1/2)2+3/4 luôn dương với mọi x 

21 tháng 7 2017

a)

\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5>0\)

b)

\(4x^2+4x+2017=4\left(x^2+x\right)+2017=4\left(x+\frac{1}{2}\right)^2-1+2017=4\left(x+\frac{1}{2}\right)^2+2016>0\)

c)

\(10-6x+x^2=x^2-6x+10=\left(x-3\right)^2-9+10=\left(x-3\right)^2+1>0\)

d)

\(1-x+x^2=x^2-x+1=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

31 tháng 8 2021

a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)

Vậy ta có đpcm 

b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)

Vậy ta có đpcm 

c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)

\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)

Vậy ta có đpcm 

d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)

\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)

Vậy ta có đpcm 

e, tự làm nhé