K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

31 tháng 8 2021

a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)

Vậy ta có đpcm 

b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)

Vậy ta có đpcm 

c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)

\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)

Vậy ta có đpcm 

d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)

\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)

Vậy ta có đpcm 

e, tự làm nhé 

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

16 tháng 7 2018

a)  \(x^2-8x+19=\left(x-4\right)^2+3>0\)

b)  \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)

c)   \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

d)  \(x^2-4x+7=\left(x-2\right)^2+3>0\)

e)  \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

f)  do  \(x^2\ge0\) với mọi x

nên   \(x^2+8>0\)

31 tháng 8 2021

a, \(E=4x^2+6x+5=4\left(x^2+\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)

\(=4\left(x+\frac{3}{4}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

Vậy ta có đpcm 

b, \(F=2x^2-3x+7=2\left(x^2-\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+7\)

\(=2\left(x-\frac{3}{4}\right)^2+\frac{47}{8}\ge\frac{47}{8}>0\forall x\)

Vậy ta có đpcm 

c, \(K=5x^2-4x+1=5\left(x^2-\frac{2.2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+1\)

\(=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}>0\forall x\)

Vậy ta có đpcm 

d, \(Q=3x^2+2x+5=3\left(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)+5\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{14}{3}\ge\frac{14}{3}>0\forall x\)

Vậy ta có đpcm 

24 tháng 6 2017

Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG

a)\(A=x^2-6x+15\)

\(\Leftrightarrow A=x^2-6x+9+6\)

\(\Leftrightarrow A=\left(x-3\right)^2+6\)

            Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)

Dấu = xảy ra khi x - 3 = 0 ; x = 3

       Vậy Min A = 6 khi x=3

b)\(B=x^2+4x\)

\(\Leftrightarrow B=x^2+4x+4-4\)

\(\Leftrightarrow B=\left(x+2\right)^2-4\)

          Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\

     Dấu = xảy ra khi x + 2 = 0 ; x = -2

Vậy Min B = -4 khi x =-2

1 tháng 8 2016

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)