Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề bài nhé vì:
\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)
\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)
\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0
=> Q luôn có gia trị âm với mọi x, y khác 0.
\(E=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Leftrightarrow E=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Leftrightarrow E=0\)
E = xn - 2(x2 - 1) - x(xn - 1 - xn - 3)
E = xn - xn - 1 - x(xn - 1 - xn - 3)
E = xn - xn - 2 - xn + xn - 2
E = (xn - xn) + (-xn - 2 + xn - 2)
E = 0
Theo ( 1 ), tính theo mod p, ta có
\(-1\equiv\left(p-1\right)!\equiv\left(n-1\right)!n\left(n+1\right)...\left(p-1\right)\)
\(\equiv\left(n-1\right)!\left(p-\left(n-p\right)\right)\left(p-\left(p-n-1\right)\right)...\left(p-1\right)\)
\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)\left(p-n-1\right)\) )...1
\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)!\)
\(\equiv\left(n-1\right)!\left(-1\right)^{n-1}\left(p-n\right)!\) ( vì p lẻ )
Cbht
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
Bất đẳng thức Bernoulli
Cách chứng minh bất đẳng thức Bernoulli