\(\left(1+x\right)^n\ge1+nx\) với x > -1 và n\(\inℕ\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Bất đẳng thức Bernoulli 

Cách chứng minh bất đẳng thức Bernoulli 

1 tháng 10 2019

Em kiểm tra lại đề bài nhé vì:

\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)

\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)

\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0

=> Q luôn có gia trị âm với mọi x, y khác 0.

15 tháng 7 2019

\(E=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)

\(\Leftrightarrow E=x^n-x^{n-2}-x^n+x^{n-2}\)

\(\Leftrightarrow E=0\)

15 tháng 7 2019

E = xn - 2(x2 - 1) - x(xn - 1 - xn - 3)

E = xn - xn - 1 - x(xn - 1 - xn - 3)

E = x- xn - 2 - xn + xn - 2

E = (xn - xn) + (-xn - 2 + xn - 2)

E = 0

Theo ( 1 ), tính theo mod p, ta có 

\(-1\equiv\left(p-1\right)!\equiv\left(n-1\right)!n\left(n+1\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(p-\left(n-p\right)\right)\left(p-\left(p-n-1\right)\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)\left(p-n-1\right)\) )...1

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)!\)

\(\equiv\left(n-1\right)!\left(-1\right)^{n-1}\left(p-n\right)!\) ( vì p lẻ )

Cbht

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)