Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)
\(=\dfrac{x^3-6x^2y}{x-6y}\)
\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)
\(=x^2\)
\(2\)/
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
3/
\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)
\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)
\(=\dfrac{n+1}{n+2}\)
4/
\(\dfrac{n!}{\left(n+1\right)!-n!}\)
\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)
\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)
\(=\dfrac{n!}{n!.n}\)
\(=\dfrac{1}{n}\)
5/
\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)
\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)
\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)
\(=\dfrac{-n-1}{n+3}\)
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018=x^{2n}+x^n-2.x^n-2-x^{2n}+x^n+2018=2016.\)
Em kiểm tra lại đề bài nhé vì:
\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)
\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)
\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0
=> Q luôn có gia trị âm với mọi x, y khác 0.
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
Bài giải:
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
b) \(x^2\left(x^2+4\right)-x^2-4=0\)
.\(\Leftrightarrow x\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow x-1=0\)(vì \(x^2+4>0\))
\(\Leftrightarrow x=1\)
Ta có : (2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)2 - [(2x)2 - 12] = 0
<=> (2x - 1)2 - (2x - 1)(2x + 1) = 0
<=> (2x - 1)[2x - 1 - (2x + 1)] = 0
<=> (2x - 1)(-2) = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
\(E=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Leftrightarrow E=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Leftrightarrow E=0\)
E = xn - 2(x2 - 1) - x(xn - 1 - xn - 3)
E = xn - xn - 1 - x(xn - 1 - xn - 3)
E = xn - xn - 2 - xn + xn - 2
E = (xn - xn) + (-xn - 2 + xn - 2)
E = 0