\(\inℕ^∗\), n < p , ta có 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo ( 1 ), tính theo mod p, ta có 

\(-1\equiv\left(p-1\right)!\equiv\left(n-1\right)!n\left(n+1\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(p-\left(n-p\right)\right)\left(p-\left(p-n-1\right)\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)\left(p-n-1\right)\) )...1

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)!\)

\(\equiv\left(n-1\right)!\left(-1\right)^{n-1}\left(p-n\right)!\) ( vì p lẻ )

Cbht

20 tháng 8 2018

Ta có :\(55^{n+1}-55=55.55^n-55=55\left(55^n-1\right)=55\left(55^n-1^n\right)=55.\left(55-1\right)^n=55.54^n⋮54\)

\(\Rightarrow55^{n+1}-55⋮54\) (điều phải chứng minh)

6 tháng 10 2020

Ta có :

55n+1 - 55 = 55.55n - 55 = 55 (55n - 1) = 55.(55n - 1n) = 55.(55-1)n

= 55.54n \(⋮\) 54

\(\Rightarrow\) 55n+1 - 55\(⋮\)54 (ĐPCM).

CHÚC BẠN HỌC TỐT ok

19 tháng 8 2018

\(55^{n+1}-55^n=55^n.55^1-55^n=55^n.55-55^n=55^n.\left(55-1\right)\)

\(=55^n.54\left(đpcm\right)\)

\(55^n.54\)chia hết cho 54

à bạn coi cái đề lại giùm mk nha hình như là \(\left(55^{n+1}-55^n\right)\)

5 tháng 7 2016

xem lại câu a nhé bạn

1 tháng 10 2019

Em kiểm tra lại đề bài nhé vì:

\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)

\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)

\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0

=> Q luôn có gia trị âm với mọi x, y khác 0.

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

27 tháng 6 2017

a) n2(n + 1) + 2n(n + 1) 

= (n2 + 2n)(n + 1)

= n(n + 2)(n + 1)  chia hết cho 6 vì là 3 số tự nhiên liên tiếp 

b) (2n - 1)3 - (2n - 1) 

= (2n - 1).[(2n - 1)2 - 1]

= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }

= *2n - 1) . 2n . (2n - 2)      chia hết cho 8 vì là 3 số chẵn liên tiếp

c) (n + 2)2 - (n - 2)2

= n2 + 4n - 4 - (n2 - 4n + 4)

= n2 + 4n - 4 - n2 + 4n - 4

= 8n - 8         chia hết cho 8