Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
<=> 2(6x2 + 13x - 5) - 6(2x2 + 3x - 2) = -6
<=> 12x2 + 26x - 10 - 12x2 - 18x + 12 = -6
<=> 8x = -8
<=> x = -1
Vậy S = {-1}
b)Đk: x \(\ge\)0
\(3\left(2\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)-\left(2\sqrt{x}-3\right)\left(9\sqrt{x}-1\right)-3=-3\)
<=> \(3\left(6x-5\sqrt{x}+1\right)-18x+19\sqrt{x}-3=0\)
<=> \(18x-15\sqrt{x}+3-18x+19\sqrt{x}-3=0\)
<=> \(4\sqrt{x}=0\) <=> x = 0 (tm)
vậy S = {0)
Bài làm :
\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)
\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)
\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)
\(=1\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .
Học tốt
đk: x > = 0
\(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
<=> \(x-2\sqrt{x}+1-x+4\sqrt{x}=11\)
<=> \(2\sqrt{x}=11\)
<=> \(\sqrt{x}=\frac{11}{2}\)
<=> x = 121/4
b) 4x2 - 4 = 0
<=> 4(x - 1)(x + 1) = 0
<=> x = 1 hoặc x = -1
Trả lời:
a, \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}+1+4\sqrt{x}-\left(\sqrt{x}\right)^2=11\)
\(\Leftrightarrow2\sqrt{x}+1=11\)
\(\Leftrightarrow2\sqrt{x}=10\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\sqrt{25}\)
\(\Rightarrow x=25\)
Vậy x = 25
b, \(4x^2-4=0\)
\(\Leftrightarrow\)\(4\left(x^2-1\right)=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1; x = -1
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
đk: x \(\ge\)0
A = \(\left(4\sqrt{x}-3\right)^2-\left(2\sqrt{x}+1\right)\left(8\sqrt{x}-3\right)+13\left(2\sqrt{x}-1\right)\)
A = \(16x-24\sqrt{x}+9-16x-2\sqrt{x}+3+26\sqrt{x}-1\)
A = 11
=> giá trị A ko phụ thuộc vào giá trị biến x