K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Bạn ơi sin gì đó bạn ?

DD
22 tháng 6 2021

\(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

NM
14 tháng 8 2021

C A B H

Gọi AH là đường cao của tam giác ABC như hình vẽ

ta có : \(AH=AC\times sinC=b.sinC\)

mà \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AC.BC.sinC=\frac{1}{2}ab.sinC\)

.b hoàn toàn tương tự ta có thể chứng minh :

\(S_{ABC}=\frac{1}{2}ab.sinC=\frac{1}{2}bc.sinA=\frac{1}{2}ac.sinB\)

hay \(abc.\frac{sinC}{c}=abc.\frac{sinA}{a}=abc.\frac{sinB}{b}\)

hay ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

22 tháng 11 2016

xét hiệu \(\frac{a^3+b^3}{2}-\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b>0)