Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
\(B=cos^2a+sin^2a\left(cos^2a+sin^2a\right)=cos^2a+sin^2a=1\)
\(C=\frac{1-sina+1+sina}{\left(1+sina\right)\left(1-sina\right)}-2tan^2a=\frac{2}{1-sin^2a}-2tan^2a\)
\(=\frac{2}{cos^2a}-\frac{2sin^2a}{cos^2a}=\frac{2\left(1-sin^2a\right)}{cos^2a}=\frac{2cos^2a}{cos^2a}=2\)
\(\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+\cos^2\alpha=\)\(\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha=\sin^2\alpha+\cos^2\alpha=1\)
\(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha=\frac{1-\sin\alpha+1+\sin\alpha}{1-\sin^2\alpha}-\frac{2\sin^2\alpha}{\cos^2\alpha}=\)
\(\frac{2}{1-\sin^2\alpha}-\frac{2\sin^2\alpha}{\cos^2\alpha}=2\left(\frac{1}{\cos^2\alpha}-\frac{\sin^2\alpha}{\cos^2\alpha}\right)=2\)
chúng không phụ thuộc vào số đo góc\(\alpha\)
\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)
PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.
\(A=\frac{\left(1-\tan^2x\right)^2}{4\tan^2x}-\frac{1}{4\sin^2x.\cos^2x}\)
\(=\frac{1}{\tan^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x}{\sin^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x-1}{\sin^22x}=\frac{-\sin^22x}{\sin^22x}=-1\)
Vậy A không phụ thuộc vào x
Bài 1:
b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
Bài 2:
\(\sqrt{ab}< =\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b>=2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
b) \(\frac{\sin25+\cos70}{\sin20+\cos65}\)
xét tam giác vuông có : sin a= cos b => cos 70 = sin (90 -70) <=> cos 70 = sin 20
cos 65 =sin 25
<=> \(\frac{\sin25+\cos70}{\sin20+\cos65}\)
=\(\frac{\sin25+\sin20}{\sin20+\sin25}=1\)
\(\frac{2\cos^2\cdot a-1}{\sin a+\cos a}=\frac{2\cos^2a-\left(\sin^2+\cos^2\right)}{\sin a+\cos a}\)
vì \(\sin^2a+\cos^2a=1\)
=\(\frac{\cos^2a-\sin^2a}{\sin a+\cos a}=\frac{\left(\cos a-\sin a\right)\left(\cos a+\sin a\right)}{\sin a+\cos a}\)
=\(\cos a-\sin a\)