Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Bài 1 :
a) 40/49 > 15/21
b) 22/49 > 3/8
c) 25/46 < 12/18
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(A=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)\)
Xét :
\(\frac{1}{2016}< \frac{1}{2015}\)\(;\)\(\frac{1}{2017}< \frac{1}{2015}\)\(;\)\(\frac{1}{2018}< \frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)
\(\Leftrightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}< 0\)
Suy ra : \(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)>4-0=4\) ( đpcm )
...
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\frac{2016-1}{2016}+\frac{2017-1}{2017}+\frac{2018-1}{2018}+\frac{2015+3}{2015}\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(=4+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2015}-\frac{1}{2018}\)
mà \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2017};\frac{1}{2018}\)
\(\Rightarrow A>4\)
a, 10^2017+8 = 100....000+8 (2017 chữ số 0) = 100....008 (2016 chữ số 8) chia hết cho 8
Có : tổng các chữ số của 10^2017+8 = 1+0+0+....+0+0+8 = 9 chia hết cho 9 => 10^2017+8 chia hết cho 9
=> 10^2017+8 chia hết cho 72 ( vì 8 và 9 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
Ta có 16 kết thúc là 6 => 16 mũ bao nhiêu cũng kết thúc là 6 hay là\(16^{2017}\)=......6
Ta có \(8^{2016}=\left(8^4\right)^{504}\)=4096 mũ 504 => 8 mũ 2016 = .........6
=> \(16^{2017}-8^{2016}=......6-........6=......0\)
Vậy \(16^{2017}-8^{2016}\)
\(3^{2n+2}+2^{n+1}+3^{2n}+2^{n+3}\)
\(=\left(3^{2n+2}+3^{2n}\right)+\left(2^{n+1}+2^{n+3}\right)\)
\(=3^{2n}\left(3^2+3^0\right)+2^n\left(2^1+2^3\right)\)
\(=3^{2n}.10+2^n.10\)=>\(\left(3^{2n}.10+2^n.10\right)⋮10\)
=> \(3^{2n+2}+2^{n+1}+3^{2n}+2^{n+3}\)chia hết cho 10
5 tiếng á ok