K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

S1 = 1-2+3-4+....+2017-2018

     = (-1)+(-1)+....+(-1)

     = (-1) x 1009

     =   -1009

22 tháng 1 2018

S3=2019 nha, mình ko kip viết cách giai

6 tháng 8 2021

\(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)

\(\Leftrightarrow\frac{x+1}{2017}+1+\frac{x+2}{2016}+1=\frac{x+3}{2015}+1+\frac{x+4}{2014}+1\)

\(\Leftrightarrow\frac{x+2018}{2017}+\frac{x+2018}{2016}-\frac{x+2018}{2015}-\frac{x+2018}{2014}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\ne0\right)=0\Leftrightarrow x=-2018\)

30 tháng 9 2018

\(4^{2017}:\left(4^{2014}+3\cdot4^{2014}\right)\)

\(=4^{2017}:4^{2014}\left(1+3\right)\)

\(=4^3\cdot4\)

\(=4^4\)

\(=256\)

30 tháng 9 2018

 4^2017 : ( 4^2014 + 3 . 4^2014 )

=\(\frac{\text{4^2017}}{\text{( 4^2014 + 3 . 4^2014 )}}\)

=\(\frac{\text{4^2017}}{\text{4^2017.4}}\)

=\(\frac{1}{4}\)

13 tháng 5 2018

rgebdrwrybwrybery

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$

$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$

$=-(9+14+19+...+2019+2024)$

Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)

\(=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1+\frac{3}{2015}\right)\)

\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)

\(=\left(1+1+1+1\right)+\left(\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\right)\)

\(=4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\)

Vì \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2015}>\frac{1}{2017};\frac{1}{2015}>\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2015}-\frac{1}{2016}>0;\frac{1}{2015}-\frac{1}{2017}>0;\frac{1}{2015}-\frac{1}{2018}>0\)

\(\Rightarrow\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>0\)

\(\Rightarrow4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>4\)

\(\Rightarrow A>4\left(dpcm\right)\)

7 tháng 5 2019

Bài 3

\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(=1+\frac{5}{n+1}\)

Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)

Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=5\Rightarrow n=4\)

\(n+1=-5\Rightarrow n=-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

Bài 2:

\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)