Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x\left(x-6\right)+10=x^2-6x+10\)
\(=\left(x-3\right)^2+1>0\) với mọi x
\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
a) \(P=2x-x^2-2\)
\(=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-1\le0-1;\forall x\)
Hay \(P\le-1< 0;\forall x\)
Vậy biểu thức P luôn có giá trị âm với mọi x
b) \(Q=-x^2-y^2+8x+4y-21\)
\(=-\left(x^2-8x+16\right)-\left(y^2-4y+4\right)-1\)
\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)
Vì \(\hept{\begin{cases}-\left(x-4\right)^2\le0;\forall x,y\\-\left(y-2\right)\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0;\forall x,y\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0-1;\forall x,y\)
Hay \(Q\le-1< 0;\forall x,y\)
Vậy biểu thức Q luôn âm với mọi gt của x,y
link tham khảo
link https://olm.vn/hoi-dap/detail/83120416222.html
hok tốt
A=x 2−2x+2
=x2-2x+1+1
=(x2-2x+1)+1
=(x-1)2+1
vì (x-1)2\(\ge0\forall x\)
=>(x-1)2+1\(\ge1\)
vậy A luôn dương với mọi x
B=x2+y2+2x−4y+6
=x2+2x+1+y2-4y+4+1
=(x2+2x+1)+(y2-4y+4)+1
=(x+1)2+(y-2)2+1
do (x+1)2\(\ge0\forall x\)
(y-2)2\(\ge0\forall y\)
=>(x+1)2+(y-2)2\(\ge0\)
=>(x+1)2+(y-2)2+1\(\ge1\)
=>B\(\ge1\)
vậy B luôn dương với mọi x;y
C= x2+y2+z2+4x−2y−4z+10
=x2+4x+4+y2-2y+1+z2-4z+4+1
=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
=(x+2)2+(y-1)2+(z-2)2+1
do (x+2)2\(\ge0\forall x\)
(y-1)2\(\ge0\forall y\)
(\(\)z-2)2\(\ge0\forall z\)
=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)
=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)
=>C\(\ge1\)
vậy C luôn dương với mọi x;y;z
bài 2: tìm x
a)\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1; y=-2
b)\(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy x=2; y=3
a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)
b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)mà\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
a) \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)
b) .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
c) \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)
A=x2-2x+2
A=(x2-2x+1)+1
A=(x-1)2+1
(x-1)2\(\ge\)0 với mọi x
=> (x-1)2+1 >0 hay A>0
Vậy A luôn dương với mọi x,y,z
B=x2+y2+z2+4x-2y-4z+10
B=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
B=(x+2)2+(y-1)2+(z-2)2+1
(x+2)2\(\ge\)0 với mọi x
(y-1)2\(\ge\)0 với mọi y
(z-2)2\(\ge\)0 với mọi z
=>(x+2)2+(y-1)2+(z-2)2+1>0 hay B>0
Vậy B luôn dương với mọi x,y,z
C=x2+y2+2x-4y+6
C=(x2+2x+1)+(y2-4y+4)+1
C=(x+1)2+(y-2)2+1
(x+1)2\(\ge\)0 với mọi x
(y-2)2\(\ge\)0 với mọi y
=>(x+1)2+(y-2)2+1>0 hay C>0
Vậy C luôn dương với mọi x,y,z
a/ \(A=x^2-2x+2\\A=x^2-2x+1+1\\ A=\left(x-1\right)^2+1>0 \)
b/ \(B=x^2+y^2+z^2+4x-2y-4z+10\)
\(B=x^2+4x+4+y^2-2y+1+z^2-4z+4+1\)
\(B=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)
c/ \(C=x^2+y^2+2x-4y+6\)
\(C=x^2+2x+1+y^2-4y+4+1\)
\(C=\left(x+1\right)^2+\left(y-2\right)^2+1>0\)
ta có
B=(x^2-2x+1)+[(3y)^2-6y+1]+1
B=(x-1)^2+(3y-1)^2+1
Mả (x-1)^2+(3y_1)^2 luôn luôn >=0
Vậy B mìn =1khi và chỉ khi x=1 va y=1/3
a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)
Vậy...
b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy..
c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)
Vậy...
a, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)
\(\Rightarrow\)Đa thức \(x^2+2x+2\) luông dương với mọi x
Vậy...
b, \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\)
\(\Rightarrow\)Đa thức \(x^2-2x+y^2+4y+6\) luôn dương với mọi x, y
Vậy...