K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

NV
27 tháng 2 2020

a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)

b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

27 tháng 2 2020

cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko

leuleu

2 tháng 3 2020

b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(b^2x^2+a^2y^2-2abxy\ge0\)
\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)} \)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
hihihihihihihihi

19 tháng 4 2018

chỗ ý 2 là x + y + z = 1 nha

14 tháng 3 2019

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{y}{x}+\frac{x}{y}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x^2-xy+y^2\right)\left(x^2-2xy+y^2\right)}{x^2y^2}\ge0\)

\(\Leftrightarrow\frac{\left[\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]\left(x-y\right)^2}{x^2y^2}\ge0\) ( đúng )

Vậy đẳng thức đã được chứng minh .

Dấu \("="\) xảy ra khi \(x=y\)

14 tháng 3 2019

DƯƠNG PHAN KHÁNH DƯƠNG: Dùng AM-GM cũng được mà

Áp dụng BĐT AM-GM ta có:\(\left\{{}\begin{matrix}\frac{x^2}{y^2}+1\ge2.\frac{x}{y}\\\frac{y^2}{x^2}+1\ge2.\frac{y}{x}\\\frac{x}{y}+\frac{y}{x}\ge2\end{matrix}\right.\)

Dấu " = " xảy ra <=> x=y

\(\Rightarrow\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1+2\ge2\left(\frac{x}{y}+\frac{y}{x}\right)+2\)

Có: \(2\left(\frac{x}{y}+\frac{y}{x}\right)+2-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+2\ge2.\left(-1\right)+2=0\)\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

Dấu " = " xảy ra <=> x=y

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

28 tháng 8 2019

<=> \(\frac{m^2y+n^2x}{xy}>=\left(\frac{m^2+2mn+n^2}{x+y}\right)\)

<=> \(\left(m^2y+n^2x\right).\left(x+y\right)>=\left(m^2+2mn+n^2\right).xy\)(vì x,y,m^2,n^2 >= 0)

<=> m2xy + n2xy + m2y2 + n2x2 >= m2xy + n2xy + 2mnxy

<=> n2x2 + m2y2 >= 2mnxy (luôn đúng) (bất đẳng thức cosi).

Vậy ....