Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
nhầm sorry bạn
b, (m+4)2>= 16m
(=) m2+8m +16 -16m >= 0
(=)m2 -8m +16 >= 0
(=) (m+4)2>= 0
Ta có (m+4)2>= 0 với mọi m
Dấu "=" xảy ra (=) (m+4)2=0
(=) m +4 = 0
(=) m= -4
Vậy (m+4)2>= 16m dấu bằng xảy ra (=) m = -4
a, Ta có:
x2+y2/16 >= 1/2 xy
(=) x2-1/2xy +y2/16 >= 0
(=) x2- 2.x.1/4 . y + (y/4)2>= 0
(=) (x-y/4)2>= 0
Ta có
(x-y/4)2>= 0 với mọi x,y
Dấu "=" xảy ra khi (=) (x-y/4)2= 0
(=) x - y/4 =0
(=) 4x = y
Vậy x2+y2/16 >= 1/2 xy Dấu "=" xảy ra khi 4x = y.
b, Ta có:
(m+4)2> 16m
(=)m2+16m + 16 - 16m > 0
(=) m2+16 > 0
Ta có
m2>= 0 với mọi m
=> m2+16 > 0 với mọi m
Vậy (m+4)2> 16m
Chúc bạn học tốt.
b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
⇔\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
⇔\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
⇔\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
⇔\(b^2x^2+a^2y^2-2abxy\ge0\)
⇔\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}
\)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
⇒\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
⇒\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
Bài 1.a) Ta có : \(\left(2a+2b\right)\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)=2.\dfrac{1}{4}\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{2}\left(2+\dfrac{a}{b}+\dfrac{b}{a}\right)=1+\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(1\right)\)Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab\)
⇔ \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( 2)
Từ ( 1; 2) ⇒ \(\left(2a+2b\right)\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\) ≥ 2
b) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+b\) ≥ \(2\sqrt{ab}\) ( 1 )
\(b+c\) ≥ \(2\sqrt{bc}\) ( 2 )
\(c+a\) ≥ \(2\sqrt{ac}\) ( 3 )
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
\(2\left(a+b+c\right)\) ≥ \(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
⇔ \(a+b+c\) ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
1.b
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung
2 . ta có
\(\left(x-y\right)^2\ge0\)
<=> x2-2xy+y2 ≥ 0
<=> x2+4xy-2xy+y2 ≥ 4xy
<=> x2+2xy+y2 ≥ 4xy
<=> (x+y)2 ≥ 4xy
CMTT
(y+z)2 ≥ 4yz
(z+x)2 ≥ 4zx
nhân các vế của bđt ta có
[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2
<=> (x+y)(y+z)(z+x) ≥ 8xyz