\(a^2\)+\(b^2-2ab\ge0\)

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

27 tháng 4 2017

e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=1+\frac{b}{a}+\frac{a}{b}+1\)

\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)

\(=2+\frac{a.a+b.b}{b.a}\)

\(\frac{a.a+b.b}{a.b}>=2\) 

Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)

Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)

27 tháng 4 2017

a) \(a^2+b^2-2ab\)

\(=\left(a-b\right)^2\)

\(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)

Hay \(a^2+b^2-2ab>=0\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

28 tháng 7 2020

a , sai đề thì phải @@

b, \(\frac{a^2+b^2}{2}\ge ab< =>a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

c, \(\left(a+1\right)^2>a\left(a+2\right)< =>a^2+2a+1>a^2+2a< =>1>0\)*đúng*

d, Áp dụng BĐT Cauchy cho 2 số :

\(m^2+1\ge2m\)

\(n^2+1\ge2n\)

Cộng theo vế ta có điều phải chứng minh 

28 tháng 7 2020

e, Áp dụng BĐT Cauchy cho 2 số không âm ta có :

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

Nhân theo vế các BĐT cùng chiều ta được :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Vậy ta có điều phải chứng minh

25 tháng 6 2019

17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3

Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7

\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3

\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)

25 tháng 6 2019

23) Cm rằng

a) a2+b2−2ab ≥0

Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)

b)\(\frac{a^2+b^2}{2}\) ≥ ab

Ta có: (a-b)2 ≥0 vs mọi a,b

\(\Leftrightarrow\) a2−2ab+b2 ≥0

\(\Leftrightarrow\) a2+b2 ≥ 2ab

\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)

c) a(a+2)<(a+1)2

Ta có: a(a+2)= a2+2a

(a+1)2 = a2 + 2a + 1

\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)

d) m2+n2+2 ≥ 2(m+n)

Ta có: (m-n)2 \(\ge\) 0

\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0

\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn

\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2

\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)

e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)

Ta có: (a - b)2 ≥ 0

\(\Leftrightarrow\) a2−2ab+b2 ≥ 0

\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0

\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0

\(\Leftrightarrow\) (a + b)2 ≥ 4ab

\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4

\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4

\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)

17 tháng 6 2016

a) \(a^2+b^2-2ab=a^2-2ab+b^2=\left(a-b\right)^2\ge0\) (1)

b) Từ đẳng thức câu a) \(\Rightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)

c) Ta có \(a\left(a+2\right)=a^2+2a\)

Từ đẳng thức (1) ta được \(\left(a+1\right)^2=a^2+2a.1+1^2=a^2+2a+1\)

Do a2 + 2a < a2 + 2a + 1 nên a(a + 2) < (a + 1)2

    Chờ tý làm tiếp câu c) d) cho vui

17 tháng 6 2016

a)ta có: (a-b)2\(\ge0\)

=> a2-2ab+b2\(\ge0\)(đpcm)

b)Từ phần a) => \(a^2+b^2-2ab\ge0\)

                     <=> \(a^2+b^2\ge2ab\)

=> \(\frac{a^2+b^2}{2}\ge ab\)(đpcm)

c)ta thấy \(\left(a+1\right)^2-a\left(a+2\right)=1>0\)

=> \(\left(a+1\right)^2>a\left(a+2\right)\)(đpcm)

d)ta thấy: \(m^2+n^2+2-2m-2n=\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\)

                                                             \(=\left(m-1\right)^2+\left(n-1\right)^2\ge0\)

=> \(m^2+n^2+2\ge2\left(m+n\right)\)(đpcm)

e)ta có: \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\)

Áp dụng BĐY cô si có:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

=>  \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2+2=4\)(đpcm)

 

4 tháng 5 2017

1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1), (2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1),(2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

mà x+y+z=3

=>\(x^2+y^2+z^2+3\ge2.3=6\)

<=> \(x^2+y^2+z^2\ge6-3=3\)

<=> \(A\ge3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1

b, Ta có: x+y+z=3

=> \(\left(x+y+z\right)^2=9\)

<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)

<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)

\(x^2+y^2+z^2\ge3\) (theo a)

=> \(9-2xy-2yz-2xz\ge3\)

<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)

<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)

<=> \(B\le3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2