Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)
c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)
=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)
=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)
=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)
=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
1: cos(2x+pi/6)=cos(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi
=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi
=>x=pi/30+k2pi/5 hoặc x=pi-k2pi
2: sin(2x+pi/6)=sin(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi
=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi
=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi
1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
Để chứng minh các định lượng đẳng cấp, ta sẽ sử dụng các công thức định lượng giác cơ bản và các quy tắc biến đổi đẳng thức. a) Bắt đầu với phương trình ban đầu: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan( π/2 - x) Ta biết rằng: cos^2(π/2 - x) = sin^2(x) (công thức lượng giác) sin^2(π/2 - x) = cos^2(x) (công thức lượng giác) Thay vào phương trình ban đầu, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -cot(π/2 - x) * tan(π/ 2 - x) Tiếp theo, ta sẽ tính toán một số lượng giác: cot(π/2 - x) = cos(π/2 - x) / sin(π/2 - x) = sin(x) / cos(x) = tan(x) (công thức lượng giác) tan(π/2 - x) = sin(π/2 - x) / cos(π/2 - x) = cos(x) / sin(x) = 1 / tan(x) (công thức lượng giác) Thay vào phương trình, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -tan(x) * (1/tan(x)) = -1 Vì vậy, ta đã chứng minh là đúng. b) Bắt đầu với phương thức ban đầu: (1/cos^2(x) + 1) * tan(x) = tan^2(x) Tiếp tục chuyển đổi phép tính: 1/cos^2(x) + 1 = tan^2(x) / tan(x) = tan(x) Tiếp theo, ta sẽ tính toán một số giá trị lượng giác: 1/cos^2(x) = sec^2(x) (công thức) lượng giác) sec^2(x) + 1 = tan^2(x) + 1 = sin^2(x)/cos^2(x) + 1 = (sin^2(x) + cos^2(x) ))/cos^2(x) = 1/cos^2(x) Thay thế vào phương trình ban đầu, ta có: 1/cos^2(x) + 1 = 1/cos^2(x) Do đó, ta đã chứng minh được b)đúng.
a: \(cos\left(2x-\dfrac{\Omega}{6}\right)+cos\left(x+\dfrac{\Omega}{3}\right)=0\)
=>\(cos\left(2x-\dfrac{\Omega}{6}\right)+sin\left(\dfrac{\Omega}{6}-x\right)=0\)
=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=-sin\left(\dfrac{\Omega}{6}-x\right)=sin\left(x-\dfrac{\Omega}{6}\right)\)
=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=cos\left(\dfrac{\Omega}{2}-x+\dfrac{\Omega}{6}\right)\)
=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=cos\left(-x+\dfrac{2}{3}\Omega\right)\)
=>\(\left[{}\begin{matrix}2x-\dfrac{\Omega}{6}=-x+\dfrac{2\Omega}{3}+k2\Omega\\2x-\dfrac{\Omega}{6}=x-\dfrac{2}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=\dfrac{5}{6}\Omega+k2\Omega\\x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)
b: \(cos\left(2x+30^0\right)+sin\left(x-30^0\right)=0\)
=>\(cos\left(2x+30^0\right)=-sin\left(x-30^0\right)\)
=>\(cos\left(2x+30^0\right)=sin\left(-x+30^0\right)\)
=>\(cos\left(2x+30^0\right)=cos\left(60^0+x\right)\)
=>\(\left[{}\begin{matrix}2x+30^0=x+60^0+k\cdot360^0\\2x+30^0=-x-60^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=30^0+k\cdot360^0\\3x=-90^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=30^0+k\cdot360^0\\x=-30^0+k\cdot120^0\end{matrix}\right.\)
a) Để chứng minh đẳng thức: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan(π/2 - x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / cos^2(π/2 - x) = (sin(π/2 - x) / cos(π/2 - x))^2 = (cos(x) / sin(x))^2 = cot^2(x) Bên phải: -cot(π/2 - x) * tan(π/2 - x) = -cot(π/2 - x) * (1 / tan(π/2 - x)) = -cot(π/2 - x) * (cos(π/2 - x) / sin(π/2 - x)) = -(cos(x) / sin(x)) * (sin(x) / cos(x)) = -1 Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh. b) Để chứng minh đẳng thức: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = tan^2(x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = (1 + cos^2(x)) * (1 + (cos(x) / sin(x))^2) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (1 + cos^2(x) / sin^2(x)) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (sin^2(x) + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) * 1 / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (cos^2(x) + sin^2(x)) / sin^2(x) * (sin(x) / cos(x)) = 1 / sin^2(x) * (sin(x) / cos(x)) = tan^2(x) Bên phải: tan^2(x) Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh.
\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)
\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)
\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)
\(\Leftrightarrow...\)