Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét △ AMB và △ AMC có:
AB=AC(gt)
góc BAM=góc CAM (gt)
AM chung
=> △ AMB= △ AMC(c.g.c)
b,xét △ AHM và △ AKM có:
AM cạnh chung
góc HAM=ˆgóc KAM (gt)
=>△ AHM= △ AKM(CH-GN)
=> AH=AK
c,gọi I là giao điểm của AM và HK
xét △ AIH và △ AIK có:
AH=AK(theo câu b)
góc AIH=ˆgóc AIK (gt)
AI chung
=> △ AIH=△ AIK (c.g.c)
=> góc AIH=ˆgóc AIK
mà góc AIH+góc AIK=180độ(2 góc kề bù)
=> HK ⊥ AM
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Câu 3 :
A I B C H K
Xét \(\Delta AIB,\Delta AIC\) có :
\(BI=CI\) (I là trung điểm của BC)
\(\widehat{AIB}=\widehat{AIC}\) (tính chất đường trung trực)
\(AI:Chung\)
=> \(\Delta AIB=\Delta AIC\left(c.g.c\right)\)
Xét \(\Delta HBI,\Delta KCI\) có :
\(\widehat{HBI}=\widehat{KCI}\) (do \(\Delta AIB=\Delta AIC\))
\(BI=CI\) (I là trung điểm của BC)
\(\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\)
=> \(\Delta HBI=\Delta KCI\) (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> \(\Delta IHK\) cân tại I
Ta có : \(\left\{{}\begin{matrix}\widehat{BHI}+\widehat{IHK}+\widehat{AHK}=180^o\\\widehat{CKI}+\widehat{IKH}+\widehat{AKH}=180^o\end{matrix}\right.\left(Kềbù\right)\)
Lại có : \(\left\{{}\begin{matrix}\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\\\widehat{IHK}=\widehat{IKH}\left(\text{Tam giác IHK cân tại I}\right)\end{matrix}\right.\)
Suy ra : \(180^o-\left(\widehat{BHI}+\widehat{IHK}\right)=180^o-\left(\widehat{CKI}+\widehat{IKH}\right)\)
\(\Leftrightarrow\widehat{AHK}=\widehat{AKH}\)
=> \(\Delta AHK\) cân tại A
Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(\text{HK // BC }\)
=> đpcm.
Xét ΔAIB,ΔAIC có
:BI=CI (I là trung điểm của BC)
ˆAIB=ˆAIC (tính chất đường trung trực)
AI:Chung
=> ΔAIB=ΔAIC(c.g.c)
Xét ΔHBI,ΔKCI có :
ˆHBI=ˆKCI (do ΔAIB=ΔAIC)
BI=CI (I là trung điểm của BC)
ˆBHI=ˆCKI(=90o)
=> ΔHBI=ΔKCI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> ΔIHK cân tại I
Ta có : {ˆBHI+ˆIHK+ˆAHK=180oˆCKI+ˆIKH+ˆAKH=180o(Kềbù)
Lại có : {ˆBHI=ˆCKI(=90o)ˆIHK=ˆIKH(Tam giác IHK cân tại I)
Suy ra : 180o−(ˆBHI+ˆIHK)=180o−(ˆCKI+ˆIKH)⇔ˆAHK=ˆAKH
=> ΔAHK cân tại A
Ta có : ˆAHK=ˆAKH=180O−ˆA2(1)
Xét ΔABC cân tại A có :ˆABC=ˆACB=180o−ˆA2(2)Từ (1) và (2) => ˆAHK=ˆABC(=180o−ˆA2) Mà thấy : 2 góc này ở vị trí đồng vị
=> HK // BC
cai đe ma cung ghi sai ac // bh con dc ac //mh thi o the
vi tam giac abc co day la bc nen bma +cma =180 ma bma =hmc doi dinh nen amc +cmh =180 suy ra amh thang hang (dpcm) bai nay cuc ki don gian luc dau mik cu tuongbai lop 6