Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.
Xét tam giác vuông AMH và tam giác vuông ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow HM=HN.\)
b) Dễ dàng thấy ngay AC là đường trung trực của HF.
Khi đó thì AH = AF; CH = CF
Xét tam giác AHC và tam giác AFC có:
Cạnh AC chung
AH - AF
CH = CF
\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)
\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)
c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)
\(\Rightarrow IN=CN\)
Xét tam giác vuông INF và tam giác vuông CNH có:
HN = FN
IN = CN
\(\Rightarrow\Delta INF=\Delta CNH\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)
Mà chúng lại ở vị trí so le trong nên IF // BC.
d) Chứng minh tương tự câu c, ta có IE // BC
Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.
Vậy I, E, F thẳng hàng.
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(gt)
\(\widehat{AEM}=90^0\)(gt)
\(\widehat{AFM}=90^0\)(gt)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(cùng vuông góc với AC)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(cmt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AE=MF(AFME là hình chữ nhật)
nên \(AE=\dfrac{AB}{2}\)
mà A,E,B thẳng hàng(gt)
nên E là trung điểm của AB
Ta có: F là trung điểm của NM(gt)
nên \(MN=2\cdot MF\)(1)
Ta có: E là trung điểm của AB(cmt)
nên AB=2AE(2)
Ta có: AEMF là hình chữ nhật(cmt)
nên MF=AE(Hai cạnh đối)(3)
Từ (1), (2) và (3) suy ra MN=AB
Xét tứ giác ABMN có
MN//AB(cùng vuông góc với AC)
MN=AB(cmt)
Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Bài làm
a) Vì E,F lần lượt đối xứng với H qua AB,AC. Nên AB lần lượt là trung điểm của của EH và HF
=> AE = AH , AH = AF
=> AE = AF
c) Vì AE = AF => Tam giác ABC cân tại A => \(\widehat{AEF}=\widehat{AFE}\) ( 1 )
Xét tam giác AME và tam giác AMH có:
AM chung
AE = AH ( cmt )
ME = MH ( AB là đường trung trực của EH )
=> tam giác AME = tam giác AMH ( c.c.c )
=> \(\widehat{AEM}=\widehat{AHM}\) ( 2 )
Xét tam giác ANH và tam giác ANF có:
AN chung
AH = AF ( cmt )
NH = NF ( AC là trung trực của HF )
=> tam giác ANH = tam giác ANF ( c.c.c )
=> \(\widehat{AHN}=\widehat{AFN}\) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) => \(\widehat{MHA}=\widehat{NHA}\)
=> HA là phân giác của \(\widehat{MHN}\)
c) Vì NH = NF nên tam giác NHF cân tại N
=> NC là phân giác của \(\widehat{HNF}\)
Xét tam giác EMH có:
EM = MH
=> Tam giác EMH cân tại M
=> MB là phân giác của \(\widehat{EMH}\)
Xét tam giác MNH có:
HA là phân giác của \(\widehat{MHN}\)
Mà BH | AH
=> BH là tia phân giác ngoài của tam giác MNH tại H
NC là tia phân giác ngoài của tam giác MNH tại H
Xét tam giác MNH có MC và HC là hai tia phân giác ngoài của tam giác MNH
=> MC là tia phân giác của góc trong tam giác MNH
=> \(\widehat{BMC}=\frac{\widehat{EMH}+\widehat{HMN}}{2}=90^0\)
Ta có \(\widehat{BMH}+\widehat{HMC}=90^0;\widehat{BMH}+\widehat{MHE}=90^0\)
=> \(\widehat{HMC}=\widehat{EMH}\)
=> CM // EH
Chứng minh tương tự BN // HF
Do đó: AH, BN, CM đồng quy tại một điểm.
# Học tốt #