Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABM=ACM có
góc B = góc C (gt)
BM=MC(gt)
AB=AC(gt)
Vậy tam giác ABM = ACM (C-G-C)
Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân
=)góc HMB=góc KMC
b, Xét tam giác HBM và KCM có:
BM=MC(gt)
góc HMB=góc KMC
Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)
=)BH = CK (2 cạnh tưng ứng)
c,
\(\widehat{ABM}=\widehat{ACM}\)
Mà \(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)
\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)
Vậy tam giác IBM cân tại I.
a) C/m ΔABM = ΔACM
Xét ΔABM và ΔACM có:
AB = AC (ΔABC cân)
\(\widehat{ABM}=\widehat{ACM}\) (ΔABC cân)
BM = CM (M là trung điểm BC)
=> ΔABM = ΔACM (c-g-c)
b) C/m BH = CK
Xét ΔvHBM và ΔvKCM có:
BM = CM (M là trung điểm BC)
\(\widehat{HBM}=\widehat{KCM}\) (ΔABC cân)
=> ΔvHBM = ΔvKCM (ch-gn)
=> BH = CK (cạnh tương ứng)
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
bn **** rồi mik làm mik ko nuốt lời đâu
a) Xét tam giác ABM và tam giác ACM
AB=AC(tam giác ABC cân)
góc B=góc C( tam giác ABC cân)
BM=CM(M là trung điểm của BC)
=>tam giác ABM=tam giác ACM(c.g.c)
bn **** mik làm nốt câu b và c
Thực hiện phép tính A =
\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+.....+2016}\right)\)
\(\)
a)Ta có \(\Delta ABC\) cân tại A mà AM là đường trung tuyến
nên AM là đường trung trực hay \(AM\perp BC\)
b)Xét \(\Delta ABM\) và \(\Delta ACM\),có:
AB = AC (\(\Delta ABC\) cân tại A)
AM là cạnh chung
BM = CM ( M là trung điểm BC)
Do đó \(\Delta ABM\) = \(\Delta ACM\) (c-c-c)
c)Xét \(\Delta HBM\) và \(\Delta KCM\),Có:
\(\widehat{H}=\widehat{K}\) (\(=90^0\))
BM = MC (M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\)cân tại A)
Do đó: \(\Delta HBM\) = \(\Delta KCM\) (ch-gn)
\(\Rightarrow HB=CK\) ( 2 cạnh tương ứng )
d)Ta có:\(\Delta HBM\)=\(\Delta KCM\) (cmt) nên \(\widehat{HMB}=\widehat{KMC}\)(2 cạnh tương ứng)
Ta có: \(BP\perp AC\) \(MK\perp AC\) nên BP song song MK
Suy ra \(\widehat{IBM}=\widehat{KMC}\)(2 góc đồng vị)
mà \(\widehat{IMB}=\widehat{KMC}\) nên \(\widehat{IBM}=\widehat{IMB}\) Suy ra \(\Delta IBM\) cân tại I
Hình tự vẽ
C/m: a, Xét \(\Delta ABM\)và \(\Delta ACM\) có:
AB = AC (do tam giác ABC cân tại A)
BM = CM ( do M là trung điểm của BC)
AM chung
=> \(\Delta ABM=\Delta ACM\)(c.c.c)
b, Xét tam giác BHM vuông tại H và CKM vuông tại K có:
BM = MC (do M là trung điểm của BC)
\(\widehat{ABC}=\widehat{ACB}\)(do tam giác ABC cân tại A)
=> \(\Delta BHM=\Delta CKM\)(cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
c) Ta có: ΔHBM vuông tại H(gt)
nên \(\widehat{HBM}+\widehat{HMB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABC}+\widehat{IMB}=90^0\)(3)
Ta có: ΔPBC vuông tại P(gt)
nên \(\widehat{PBC}+\widehat{PCB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{IBM}+\widehat{ACB}=90^0\)(4)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)(5)
Từ (3), (4) và (5) suy ra \(\widehat{IBM}=\widehat{IMB}\)
Xét ΔIBM có \(\widehat{IBM}=\widehat{IMB}\)(cmt)
nên ΔIBM cân tại I(Định lí đảo của tam giác cân)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BP là đường cao ứng với cạnh AC(gt)
AM cắt BP tại O(gt)
Do đó: O là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
Suy ra CO\(\perp\)AB
mà MH\(\perp\)AB(gt)
nên CO//MH(Định lí 1 từ vuông góc tới song song)
a) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
b) Xét ΔHBM vuông tại H và ΔKCM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)
Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)
Suy ra: BH=CK(hai cạnh tương ứng)
c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK
vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)
nên => góc PMC = góc KMC(đồng vị)
vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)
nên tam giác BIM cân tại I
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét \(\Delta AMB\) và \(\Delta MAC\)CÓ
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung
Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
a) Vì tam giác ABC cân tại A =>AB=AC và góc ABC=góc ACB hay góc HBM= góc KCM
Vì M là trung điểm của BC =>BM=MC
Xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
Chung cạnh AM
Do đó tam giac ABM = tam giác ACM (c.c.c)
b) Vì MH vuông góc với AB =>góc BHM=90
MK vuông góc với AC =>góc MKC=90
Do đó góc BHM = góc MKC =90
Xét tam giac BHM và tam giác CKM có
góc BHM= góc CKM=90
BM=CM
góc HBM= góc KCM
Do đó tam giac BHM = tam giac CKM (cạnh huyền-góc nhọn)
=>BH=CK (hai cạnh tương ứng)
c)Vì BP vuông góc với AC,MK vuông góc với AC
=>BP song song với MK
=>góc PBM= góc KMC ( hai góc đồng vị)
Vì tam giác BHM = tam giác CKM => góc BMH = góc CMK
Do đó góc PBM = góc HMB hay góc IBM = góc IMB
Trong tam giác BIM có góc IBM = góc IMB => tam giác BIM cân
a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)