
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


o x a z y a 60 120
câu a) a thuộc ox suy ra x , a , o thằng hàng
suy ra zAo kề bù với zAx
tổng 2 góc kề bù = 180
mà zAo=60 suy ra zAx=180-60=120
vậy az // với oy " 2 góc =120 " đồng vị

Bài này lm từ đơt đầu năm mà quên mất tiêu r
+) Trên tia đổi của AB lấy AH sao cho AH = AB = \(\frac{1}{2}\) BC
+) Xét Δ AHC vuông tại A và Δ ABC vuông tại A có
AH = AB ( cách vẽ )
AC: cạnh chung
⇒ ΔAHC = Δ ABC ( c-g-c)
⇒ HC = BC ( 2 cạnh tương ứng )
Ta có H thuocj tia đối của tia AB
=> HA + AB = HB (1)
Mà AH = AB = \(\frac{1}{2}\) BC ( cách vẽ )
=> 2 AH = 2 AB = BC (2)
=> 2AH = 2 HB = AB = BC
+) Xét ΔABH có \(\hept{\begin{cases}HB=BC\\HC=BC\end{cases}}\)
=> ΔABH đều
=> \(\widehat{B}=60^o\) ( tính chất tam giác đều )

Từ B hạ đường vuông góc với AC tại H
Ta có:\(\widehat{BAH}=180^0-\widehat{BAC}=180^0-120^0=60^0\)
Suy ra 2HA=AB(1)(bạn tự chứng minh)
Áp dụng định lý Py-ta-gô vào 2 tam giác vuông AHB và CHB ta có
\(\Rightarrow\left\{{}\begin{matrix}HA^2+HB^2=AB^2\left(2\right)\\HB^2+HC^2=BC^2\end{matrix}\right.\)
Ta có:\(HB^2+HC^2=BC^2\)
\(\Rightarrow HB^2+\left(HA+AC\right)^2=BC^2\)(Vì \(\widehat{A}>90^0\)nên H nằm trên tia đối của AC)
\(\Rightarrow HB^2+HA^2+2HAAC+AC^2=BC^2\left(3\right)\)
\(\Rightarrow\left(HB^2+HA^2\right)+2HAAC+AC^2\)
Lắp (1) và (2) vào (3)
\(\Rightarrow AB^2+AB.AC+AC^2=BC^2\)hay \(a^2=b^2+c^2+bc\left(đpcm\right)\)

Ta có : \(mOn=mDt\left(=60^0\right)\); mà hai góc này ở vị trí so le trong tạo bởi tia \(Om\) cắt tia \(Dt\) và \(On\)
⇒ \(Dt\) // \(On\) \(\left(DHNB\right)\)

a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM

A B C D x
a) \(\Delta ABC\)có: \(\widehat{ACB}=180^o-75^o-60^o=45^o\)
\(\Delta\)DAB vuông tại A có: \(\widehat{DBA}\)=60o-15o=45o
=> \(\Delta\)DAB cân tại A => \(\widehat{ADB}\)=45o
Tứ giác ABCD có: \(\widehat{ADB}=\widehat{ACB}\left(=45^o\right)\)
=> Tứ giác ABCD nội tiếp đường tròn
=> \(\widehat{DCB}+\widehat{DAB}=180^o\)
=> \(\widehat{DCB}=90^o\)
=> DC _|_ BC(đpcm)
b) \(\Delta\)ABD vuông cân tại A nên AD=AB=1
=> BD2=AB2+AD2=12+12=2
Xét \(\Delta\)DCB vuông tại C có:
CD2+BC2=BD2=2
Vậy BC2+CD2=2

Ta có : \(\dfrac{a}{b}=\dfrac{b}{c}=k\rightarrow a=bk;b=ck\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\dfrac{b^2k^2+b^2}{c^2k^2+c^2}=\dfrac{b^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}=\dfrac{b^2}{c^2}\)Vì \(\dfrac{b^2}{c^2}=\dfrac{\left(ak\right)^2}{\left(bk\right)^2}=\dfrac{a^2k^2}{b^2k^2}=\dfrac{a^2}{b^2}\)
\(\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2}{b^2}\) nếu \(\dfrac{a}{b}=\dfrac{b}{c}\)
Cách khác :V
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=t\)
Nên: \(\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}=t^2\)
\(\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}=t^2\)
Đinh Tuấn Việt: so le trong thật chứ, góc B1 ở ngoài mà
Gọi A2 = 120o ; B1 = 60o
Đánh số tương ứng từ 1 đến 4.
Ta có : B1 = B3 = 60o (đối đỉnh)
A2 = A4 = 120o (đối đỉnh)
Mà A3 + A4 = 180o (kề bù)
=> A3 = 180o - 120o = 60o
Vậy A3 = B1 = 60o là hai góc so le trong => a // b