Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A
=> góc B + góc C = 90 độ
Ta có : \(\widehat{CBx}+\widehat{BCy}=90^o+90^o=180^o\)
=> \(\widehat{ABx}+\widehat{ABC}+\widehat{ACB}+\widehat{ACy}=180^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ACy}+90^o=180^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ACy}=90^o\)
Gửi em!
Vẽ tam giác đều BEC (A và E nằm trên cùng một nửa mặt phẳng bờ BC)
\(\widehat{A}=40^o\) nên \(\widehat{ABC}=70^o\)
Ta có \(\widehat{EBA}=\widehat{ABC}-60^o=70^o-60^o=10^o\)
\(\Delta EAB=\Delta CDB\left(c.g.c\right)\\ \Rightarrow\widehat{EAB}=\widehat{CDB}\\ \Delta EAB=\Delta EAC\left(c.c.c\right)\)
Mà \(\widehat{BAC}=40^o\) nên \(\widehat{EAB}=\widehat{EAC}=20^o\)
Vậy \(\widehat{BDC}=\widehat{EAB}=20^o\)
mk ko biết nhưng bạn có thể vào trang web : toanh7.edu.vn hoặc h.vn để đước giải đáp tốt hơn.
A B C D x
a) \(\Delta ABC\)có: \(\widehat{ACB}=180^o-75^o-60^o=45^o\)
\(\Delta\)DAB vuông tại A có: \(\widehat{DBA}\)=60o-15o=45o
=> \(\Delta\)DAB cân tại A => \(\widehat{ADB}\)=45o
Tứ giác ABCD có: \(\widehat{ADB}=\widehat{ACB}\left(=45^o\right)\)
=> Tứ giác ABCD nội tiếp đường tròn
=> \(\widehat{DCB}+\widehat{DAB}=180^o\)
=> \(\widehat{DCB}=90^o\)
=> DC _|_ BC(đpcm)
b) \(\Delta\)ABD vuông cân tại A nên AD=AB=1
=> BD2=AB2+AD2=12+12=2
Xét \(\Delta\)DCB vuông tại C có:
CD2+BC2=BD2=2
Vậy BC2+CD2=2