\(\widehat{A}\) =120o , BC=a, AC=b, AB=c, Chứng minh a2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Từ B hạ đường vuông góc với AC tại H

Ta có:\(\widehat{BAH}=180^0-\widehat{BAC}=180^0-120^0=60^0\)

Suy ra 2HA=AB(1)(bạn tự chứng minh)

Áp dụng định lý Py-ta-gô vào 2 tam giác vuông AHB và CHB ta có

\(\Rightarrow\left\{{}\begin{matrix}HA^2+HB^2=AB^2\left(2\right)\\HB^2+HC^2=BC^2\end{matrix}\right.\)

Ta có:\(HB^2+HC^2=BC^2\)

\(\Rightarrow HB^2+\left(HA+AC\right)^2=BC^2\)(Vì \(\widehat{A}>90^0\)nên H nằm trên tia đối của AC)

\(\Rightarrow HB^2+HA^2+2HAAC+AC^2=BC^2\left(3\right)\)

\(\Rightarrow\left(HB^2+HA^2\right)+2HAAC+AC^2\)

Lắp (1) và (2) vào (3)

\(\Rightarrow AB^2+AB.AC+AC^2=BC^2\)hay \(a^2=b^2+c^2+bc\left(đpcm\right)\)

26 tháng 2 2020

Thanks

28 tháng 2 2020

Bài này lm từ đơt đầu năm mà quên mất tiêu r

+) Trên tia đổi của AB lấy AH sao cho AH = AB = \(\frac{1}{2}\) BC

+) Xét Δ AHC vuông tại A và Δ ABC vuông tại A có

AH = AB ( cách vẽ )

AC: cạnh chung

⇒ ΔAHC = Δ ABC ( c-g-c)

⇒ HC = BC  ( 2 cạnh tương ứng )

Ta có H thuocj tia đối của tia AB 

=> HA + AB  = HB  (1)

Mà AH = AB = \(\frac{1}{2}\) BC ( cách vẽ )

=> 2 AH = 2 AB = BC   (2)

=> 2AH = 2 HB = AB  =  BC

+) Xét ΔABH có \(\hept{\begin{cases}HB=BC\\HC=BC\end{cases}}\)

=> ΔABH đều

=> \(\widehat{B}=60^o\)  ( tính chất tam giác đều )

Có bạn nài làm đc ko v

27 tháng 12 2017

Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)

Suy ra tam giác ABD = tam giác FBC (c.g.c)
=> FC=AD

Lại có góc FAC = FAB + BAC = 90 độ
=> FC^2=FA^2+AC^2
<=> FC^2 = AB^2 + AC^2 (vì FA=AB, 2 cạnh tam giác đều)
<=> DA^2=AB^2 + AC^2 (đpcm)

27 tháng 3 2017

Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)

Suy ra tam giác ABD = tam giác FBC (c.g.c)
=> FC=AD

Lại có góc FAC = FAB + BAC = 90 độ
=> FC^2=FA^2+AC^2
<=> FC^2 = AB^2 + AC^2 (vì FA=AB, 2 cạnh tam giác đều)
<=> DA^2=AB^2 + AC^2 (đpcm)